, Volume 21, Issue 4, pp 2557–2566 | Cite as

Magneto-responsive hybrid materials based on cellulose nanocrystals

  • Tiina Nypelö
  • Carlos Rodriguez-Abreu
  • José Rivas
  • Michael D. Dickey
  • Orlando J. Rojas
Original Paper


We fabricated self-standing films of cellulose nanocrystals (CNC) and electrospun composite fibers with CNC and polyvinyl alcohol both with magnetic properties arising from cobalt iron oxide nanoparticles in the CNC matrix. Aqueous dispersions of cobalt-iron oxide nanoparticles (10–80 nm diameter) and CNCs (ca. 150 nm length) were used as precursor systems for the films and composite fibers. The properties of the hybrid material were determined by electron and atomic force microscopy, X-ray diffraction, thermogravimetry and magnetometry. The CNC-inorganic system was ferromagnetic, with a saturation magnetization of ca. 20 emu g−1 of the magnetic phase. We demonstrate potential applications of the precursor dispersions, including magnetic fluid hyperthermia and highlight possible uses of the CNC-based magneto-responsive systems in biomedical and magneto-optical components.


Cellulose nanocrystals Magneto-responsive materials Cobalt iron oxide particles Self-standing film CNC hybrids Responsive dispersion 



Tiina Nypelö acknowledges Emil Aaltonen foundation for funding. Carlos Rodriguez-Abreu is grateful to the European Union’s Seventh Framework Program (FP7/2007-2013) under COOPERATION program NMP-theme, grant agreement no 314212, for funding. The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University (NCSU), which is supported by the State of North Carolina and the National Science Foundation. Charles Mooney (AIF, NCSU) is acknowledged for help in SEM imaging, Roberto Garcia (AIF, NCSU) for the TEM imaging and Yury V. Kolenko (INL, Portugal) for his help in XRD analysis.

Supplementary material

10570_2014_307_MOESM1_ESM.pdf (313 kb)
Supplementary material 1 (PDF 313 kb)

Supplementary material 2 (M4V 13041 kb)


  1. Ago M, Okajima K, Jakes JE, Park S, Rojas OJ (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules 13:918–926CrossRefGoogle Scholar
  2. Ammar S, Helfen A, Jouini N, Fievet F, Rosenman I, Villain F, Molinie P, Danot M (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192CrossRefGoogle Scholar
  3. Anirudhan TS, Rejeena SR (2013) Selective adsorption of hemoglobin using polymer-grafted-magnetite nanocellulose composite. Carbohydr Polym 93:518–527CrossRefGoogle Scholar
  4. Baldi G, Bonacchi D, Franchini MC, Gentili D, Lorenzi G, Ricci A, Ravagli C (2007a) Synthesis and coating of cobalt ferrite nanoparticles: a first step toward the obtainment of new magnetic nanocarriers. Langmuir 23:4026–4028CrossRefGoogle Scholar
  5. Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C (2007b) Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater 311:10–16CrossRefGoogle Scholar
  6. Carrazana-Garcia JA, Lopez-Quintela M, Rivas J (1995) Ferrimagnetic paper obtained by in situ synthesis of substituted ferrites. IEEE Trans Magn 31:3126–3130CrossRefGoogle Scholar
  7. Carrazana-García JA, Lopez-Quintela M, Rivas J (1997) Characterization of ferrite particles synthesized in presence of cellulose fibers. Colloids Surf A 121:61–66CrossRefGoogle Scholar
  8. Chen L, Berry RM, Tam KC (2014) Synthesis of β-cyclodextrin modified cellulose nanocrystals (CNCs)@ Fe3O4@ SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng 2:951–958CrossRefGoogle Scholar
  9. Chin SF, Binti Romainor AN, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243CrossRefGoogle Scholar
  10. Cranston ED, Gray DG (2006) Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci Technol Adv Mater 7:319–321CrossRefGoogle Scholar
  11. Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf A 325:44–51CrossRefGoogle Scholar
  12. Dufresne A (2012) Nanocellulose: From nature to high performance tailored materials. Walter de Gruyter, Munchen, GermanyCrossRefGoogle Scholar
  13. Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRefGoogle Scholar
  14. Habib A, Ondeck C, Chaudhary P, Bockstaller M, McHenry M (2008) Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J Appl Phys 103:07A307–07A307-3Google Scholar
  15. Habibi Y, Hoeger I, Kelley SS, Rojas OJ (2009) Development of Langmuir–Schaeffer cellulose nanocrystal monolayers and their interfacial behaviors. Langmuir 26:990–1001CrossRefGoogle Scholar
  16. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  17. Jolivet J, Chanéac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 481–483.
  18. Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419CrossRefGoogle Scholar
  19. Köseoğlu Y, Oleiwi Oleiwi MI, Yilgin R, Koçbay AN (2012) Effect of chromium addition on the structural, morphological and magnetic properties of nano-crystalline cobalt ferrite system. Ceram Int 38:6671–6676CrossRefGoogle Scholar
  20. Li Y, Zhu H, Gu H, Dai H, Fang Z, Weadock NJ, Guo Z, Hu L (2013) Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. J Mater Chem A 1:15278–15283CrossRefGoogle Scholar
  21. Liu S, Zhou J, Zhang L (2011) In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose 18:663–673CrossRefGoogle Scholar
  22. Mahmoud KA, Lam E, Hrapovic S, Luong JH (2013) Preparation of well-dispersed gold/magnetite nanoparticles embedded on cellulose nanocrystals for efficient immobilization of papain enzyme. ACS Appl Mater Interfaces 5:4978–4985CrossRefGoogle Scholar
  23. Marchessault R, Rioux P, Raymond L (1992a) Magnetic cellulose fibres and paper: preparation, processing and properties. Polymer 33:4024–4028CrossRefGoogle Scholar
  24. Marchessault RH, Ricard S, Rioux P (1992b) In situ synthesis of ferrites in lignocellulosics. Carbohydr Res 224:133–139CrossRefGoogle Scholar
  25. Marchessault RH, Bremner G, Chauve G (2006) Fishing for proteins with magnetic cellulosic nanocrystals. In: Polysaccharides for drug delivery and pharmaceutical applications. ACS Publications, pp 3–17Google Scholar
  26. Ngo AT, Pileni MP (2000) Nanoparticles of cobalt ferrite: influence of the applied field on the organization of the nanocrystals on a substrate and on their magnetic properties. Adv Mater 12:276–279CrossRefGoogle Scholar
  27. Olsson RT, Salazar-Alvarez G, Hedenqvist MS, Gedde UW, Lindberg F, Savage SJ (2005) Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles. Chem Mater 17:5109–5118CrossRefGoogle Scholar
  28. Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2011) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRefGoogle Scholar
  29. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRefGoogle Scholar
  30. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRefGoogle Scholar
  31. Roman M, Navarro F (2009) Deposition of cellulose nanocrystals by inkjet printing. In: Model cellulosic substrates, ACS symposium series. ACS Publications, pp 157–171Google Scholar
  32. Roman M, Dong S, Hirani A, Lee YW (2009) Cellulose nanocrystals for drug delivery. In: Polysaccharide materials: Performance by design, ACS Symposium Series. ACS Publications, pp 81–91Google Scholar
  33. Scherrer P (1918) Göttinger Nachrichten Gesell. 2:98–100Google Scholar
  34. Tung L, Kolesnichenko V, Caruntu D, Chou N, OConnor C, Spinu L (2003) Magnetic properties of ultrafine cobalt ferrite particles. J Appl Phys 93:7486–7488CrossRefGoogle Scholar
  35. Vallejos ME, Peresin MS, Rojas OJ (2012) All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. J Polym Environ 20:1075–1083CrossRefGoogle Scholar
  36. Vitta S, Drillon M, Derory A (2010) Magnetically responsive bacterial cellulose: Synthesis and magnetic studies. J Appl Phys 108:053905/1-053905/7Google Scholar
  37. Wu WB, Jing Y, Gong MR, Zhou XF, Dai HQ (2011) Preparation and properties of magnetic cellulose fiber composites. BioResources 6:3396–3409Google Scholar
  38. Xiong R, Lu C, Wang Y, Zhou Z, Zhang X (2013) Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J Mater Chem A 1:14910–14918CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tiina Nypelö
    • 1
  • Carlos Rodriguez-Abreu
    • 2
  • José Rivas
    • 2
  • Michael D. Dickey
    • 3
  • Orlando J. Rojas
    • 1
    • 3
    • 4
  1. 1.Department of Forest BiomaterialsNorth Carolina State UniversityRaleighUSA
  2. 2.INL-International Iberian Nanotechnology LaboratoryBragaPortugal
  3. 3.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA
  4. 4.Department of Forest Products TechnologyAalto University School of Chemical TechnologyAalto, EspooFinland

Personalised recommendations