, Volume 21, Issue 3, pp 1987–1995 | Cite as

Development of an enantioselective membrane from cellulose acetate propionate/cellulose acetate, for the separation of trans-stilbene oxide

  • Lucía Z. Flores-López
  • Jonathan Caloca
  • Eduardo Rogel-Hernández
  • Heriberto Espinoza-Gomez
Original Paper


This paper reports the characterization of new synthesized chiral polymeric membranes, based on a cellulose acetate propionate polymer. The flux and permselective properties of the membrane were studied using 50 % ethanol solution of (R,S)-trans-stilbene oxide as feed solution. Scanning electron microscopy revealed the asymmetric structure of these membranes. The roughness of the surface was measured by atomic force microscopy. The resolution of over 97 % enantiomeric excess was achieved when the enantioselective membrane was prepared with 18 wt% cellulose acetate and 8 wt% cellulose acetate propionate in the casting solution of dimethyl formamide/N-methyl-2-pyrrolidone/acetone, at 20 °C and 55 % humidity, and a water bath at 10 °C for the gelation of the membrane. The operating pressure and the feed concentration of the trans-stilbene oxide were 275.57, 345.19, and 413.84 kPa and 2.6 mM, respectively.


Enantioselective membrane Chiral separation Cellulose acetate propionate membrane 



We gratefully acknowledge support for this research work by Dirección General de Educación Superior Tecnológica (DGEST Grant 4374.11-P). Also, to Ing. Israel Gradilla Martίnez from Centro de Nanociencias y Nanotecnología de la UNAM (CNyN) for SEM analysis, and M.C. Pedro Navarro-Vega from Centro de Graduados e Investigación del Instituto Tecnológico de Tijuana (CGI-ITT) for AFM analysis.


  1. Ahuja S (2000) Chiral separations by chromatography. Oxford University Press, OxfordGoogle Scholar
  2. Espinoza-Gomez H, Lin SW (2001) Development of acrylonitrile co-polymers ultrafiltration membranes. Polym Bull 3–4:297–304CrossRefGoogle Scholar
  3. Hadik P, Szabó LP, Nagy E, Farkas Z (2005) Enantioseparation of D, L-lactic acid by membrane techniques. J Membr Sci 251:223–232CrossRefGoogle Scholar
  4. Hazarika S (2008) Enantioselective permeation of racemic alcohol through polymeric membrane. J Membr Sci 310:174–183CrossRefGoogle Scholar
  5. Higuchi A, Hayashi A, Kanda N, Sanui K, Kitamura H (2005) Chiral separation of amino acids in ultrafiltration through DNA-immobilized cellulose membranes. J Mol Struct 739:145–152CrossRefGoogle Scholar
  6. Higuchi A, Higuchi Y, Furuta K, Yoon BO, Hara M, Maniwa S, Saitoh M, Sanui K (2003) Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes. J Membr Sci 221:207–218CrossRefGoogle Scholar
  7. Higuchi A, Yomogita H, Yoon BO, Kojima T, Hara M, Maniwa S, Saitoh M (2002) Optical resolution of amino acid by ultrafiltration using recognition sites of DNA. J Membr Sci 205:203–212CrossRefGoogle Scholar
  8. Jacoby M (2005) Taxol. Chem Eng News 83(25):120. doi: 10.1021/cen-v083n025.p120
  9. Jacques J, Collet A, Wilen S (1981) Enantiomers racemates, and resolutions. Wiley/Interscience, New York, p 5Google Scholar
  10. Jiang YD, Zhang JH, Xie SM, Lv YC, Zhang M, Ma C, Yuan LM (2012) Chiral separation of D, l-tyrosine through nitrocellulose membrane. J Appl Polym Sci 124:5187–5193Google Scholar
  11. Kemperman AJB, Bargeman D, Van den Boomgaard T, Strathmann H (1996) Stability of supported liquid membranes: state of the art. Sep Sci Technol 31:2733–2762CrossRefGoogle Scholar
  12. Kim JH, Kim JH, Jegal J, Lee KH (2003) Optical resolution of α-amino acids through enantioselective polymeric membranes based on polysaccharides. J Membr Sci 213:273–283CrossRefGoogle Scholar
  13. Krieg HM, Breytenbach JC, Keizer K (2000) Chiral resolution by β-cyclodextrin polymer impregnated ceramic membranes. J Membr Sci 164:177–185CrossRefGoogle Scholar
  14. Li ZJ, Zell MT, Munson EJ, Grant DJW (1999) Characterization of racemic species of chiral drugs using thermal analysis, thermodynamic calculation, and structural studies. J Pharm Sci 88:337–346CrossRefGoogle Scholar
  15. Ma C, Xu CL, Ai P, Xie SM, Lv YC, Shan HQ, Yuan LM (2011) Chiral separation of D,l-mandelic acid through cellulose membranes. Chirality 23:379–382CrossRefGoogle Scholar
  16. Maier NM, Franco P, Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 906:3–33CrossRefGoogle Scholar
  17. Masawaki T, Sasai M, Tone S (1992) Optical resolution of an amino acid by enantio selective ultrafiltration membrane. J Chem Eng Jpn 25:33–39CrossRefGoogle Scholar
  18. Nohira H, Watanabe K, Kurokawa M (1976) Optical resolution of N-benzoyl-cis-2 aminocyclohexanecarboxylic acid by preferential crystallization. Chem Lett 5:299–300CrossRefGoogle Scholar
  19. Okamoto Y, Kawashima M, Yamamoto K, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution. Cellulose triacetate and tribenzoate coated on macroporous silica gel. Chem Lett 13:739–742CrossRefGoogle Scholar
  20. Okamoto Y, Yashima E (1998) Polysaccharide derivatives for chromatographic separation of enantiomers. Angew Chem Int Ed Engl 37:1020–1043CrossRefGoogle Scholar
  21. Romero J, Zydney AL (2002) Staging of affinity ultrafiltration processes for chiral separations. J Membr Sci 209:107–119CrossRefGoogle Scholar
  22. Rouhi M (2005) Thalidomide. Chem Eng News 83:25 122Google Scholar
  23. Stinson S (2001) Chiral pharmaceuticals. Chem Eng News 79(40):79–97CrossRefGoogle Scholar
  24. Svang-Ariyaskul A, Koros WJ, Rousseau RW (2009) Chiral separation using a novel combination of cooling crystallization and a membrane barrier: resolution of D, l-glutamic acid. Chem Eng Sci 64:1980–1984CrossRefGoogle Scholar
  25. Thoelen C, De Bruyn M, Theunissen E, Kondo Y, Vankelecom IFJ, Grober P, Yoshikawa M, Jacobs PA (2001) Membranes based on poly(γ-methyl-L-glutamate): synthesis, characterization and use in chiral separation. J Membr Sci 186:153–163CrossRefGoogle Scholar
  26. Tian FY, Zhang JH, Duan AH, Wang BJ, Yuan LM (2012) Chiral separation of D, L mandelic acid using an enantioselective membrane formed by polycondensation of β-cyclodextrin with1,6-diisocyanatohexane on a polysulfone membrane. J Membr Sep Tech 1:72–78Google Scholar
  27. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262CrossRefGoogle Scholar
  28. Wang HD, Xie R, Niu CH, Song H, Yang M, Liu S, Chu LY (2009a) Chitosan chiral ligand exchange membranes for sorption resolution of amino acids. Chem Eng Sci 64:1462–1473CrossRefGoogle Scholar
  29. Wang WF, Xiong WW, Zhao M, Sun WZh, Li FR, Yuan LM (2009b) Chiral separation of trans-stilbene oxide through cellulose acetate butyrate membrane. Tetrahedron Asymmetry 20:1052–1056CrossRefGoogle Scholar
  30. Wang X, Wang XJ, Ching CB (2002) Solubility, metastable zone width, and racemic characterization of propanolol hydrochloride. Chirality 14:318–324CrossRefGoogle Scholar
  31. Wang XJ, Wiehler H, Ching CB (2003) Physicochemical properties and the crystallization thermodynamics of the pure enantiomer and the racemate for n-methylephedrine. J Chem Eng Data 48:1092–1098CrossRefGoogle Scholar
  32. Wang Y, Hu Y, Xu J, Luo GS, Dai YY (2007) Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen. J Membr Sci 293:133–141CrossRefGoogle Scholar
  33. Wang Y, LoBrutto R, Wenslow RW, Santos I (2005) Eutectic composition of a chiral mixture containing a racemic compound. Org Process Res Dev 9:670–676CrossRefGoogle Scholar
  34. Ward TJ, Hamburg DM (2004) Chiral separations. Anal Chem 76:4635–4644CrossRefGoogle Scholar
  35. Xie SM, Wang WF, Ai P, Yang M, Yuan LM (2008) Chiral separation of (R, S)-2-phenyl 1-propanol through cellulose acetate butyrate membranes. J Membr Sci 321:293–298CrossRefGoogle Scholar
  36. Xiong WW, Wang WF, Zhao L, Song Q, Yuan LM (2009) Chiral separation of (R, S)-2-phenyl-1-propanol through glutaraldehyde-crosslinked chitosan membranes. J Membr Sci 328:268–272CrossRefGoogle Scholar
  37. Yang M, Zhao M, Xie SM, Yuan LM (2009) Optical resolution of (R, S)-2-phenyl-1-propanol through enantioselective ethycellulose membranes. J Appl Polym Sci 112:2516–2521CrossRefGoogle Scholar
  38. Yokota M, Doki N, Shimizu K (2006) Chiral separation of a racemic compound induced by transformation of racemic crystal structures: DL-glutamic acid. Cryst Growth Des 6:1588–1590CrossRefGoogle Scholar
  39. Yoshikawa M, Murakoshi K, Kogita T, Hanaoka K, Guiver MD, Robertson GP (2006) Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups. Eur Polym J 42:2532–2539CrossRefGoogle Scholar
  40. Yoshikawa M, Yonetani K (2002) Molecularly imprinted polymeric membranes with oligopeptide tweezers for optical resolution. Desalination 149:287–292CrossRefGoogle Scholar
  41. Zhao M, Xu XL, Jiang YD, Sun WZh, Wang WF, Yuan LM (2009) Enantioseparation of trans-stilbene oxide using a cellulose acetate membrane. J Membr Sci 336:149–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lucía Z. Flores-López
    • 1
  • Jonathan Caloca
    • 1
  • Eduardo Rogel-Hernández
    • 2
  • Heriberto Espinoza-Gomez
    • 2
  1. 1.Centro de Graduados e Investigación del Instituto Tecnológico de TijuanaTijuanaMexico
  2. 2.Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma de Baja CaliforniaTijuanaMexico

Personalised recommendations