Skip to main content
Log in

Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Antibacterial-modified cellulose fiber was prepared by covalently bonding β-cyclodextrin (β-CD) with cellulose fiber via citric acid (CA) as crosslinking agent, followed by the inclusion of ciprofloxacin hydrochloride (CipHCl) as antibiotic. Effects of reaction time, temperature, concentration of β-cyclodextrin citrate (CA-β-CD) and pH on the grafting reaction were investigated, and the grafting ratio of β-CD onto cellulose fibers was 9.7 % at optimal conditions; the loading and releasing behaviors of CipHCl into/from β-CD grafted cellulose fibers were also revealed, the load amount of CipHCl into grafted cellulose fibers increased remarkably, and the release of CipHCl from the grafted cellulose fibers was prolonged. The microstructure, phase and thermal stability of modified cellulose fibers were characterized by FT-IR, 13C CPMAS NMR, X-ray diffraction and TGA. Considerably longer bacterial activity against E. coli and S. aureus was observed for grafted fibers loading CipHCl compared to virgin ones. Optical and mechanical properties of the paper sheets decreased generally with more antibacterial-modified fibers added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gandara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23(7):1631–1640

    Article  CAS  Google Scholar 

  • Bajpai M, Gupta P, Bajpai SK (2010) Silver (I) ions loaded cyclodextrin-grafted-cotton fabric with excellent antimicrobial property. Fibers Polym 11(1):8–13

    Article  CAS  Google Scholar 

  • Buschmann H, Denter U, Knittel D, Schollmeyer E (1998) The use of cyclodextrins in textile processes—an overview. J Text Inst 89(3):554–561

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811

    Article  CAS  Google Scholar 

  • Cusola O, Tabary N, Belgacem MN, Bras J (2013) Cyclodextrin functionalization of several cellulosic substrates for prolonged release of antibacterial agents. J Appl Polym Sci 129(2):604–613

    Article  CAS  Google Scholar 

  • Denter U, Schollmeyer E (1997) Surface modification of synthetic and natural fibres by fixation of cyclodextrin derivatives. In: Proceedings of the 8th international symposium on cyclodextrins, pp 559–564

  • Desmet G, Takács E, Wojnárovits L, Borsa J (2011) Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization. Radiat Phys Chem 80(12):1358–1362

    Article  CAS  Google Scholar 

  • Dipa R, Mahuya D, Debarati M (2009) Influence of alkali treatment on creep properties and crystallinity of jute fibres. Bioresources 4(2):730–739

    Google Scholar 

  • El-Tahlawy K, Gaffar MA, El-Rafie S (2006) Novel method for preparation of β-cyclodextrin/grafted chitosan and it’s application. Carbohydr Polym 63(3):385–392

    Article  CAS  Google Scholar 

  • Gawish SM, Ramadan AM, Abo El-Ola SM, Abou El-Kheir AA (2009) Citric acid as a cross-linking agent for grafting β-cyclodextrin onto wool fabric. Polym Plast Technol Eng 48(7):701–710

    Article  CAS  Google Scholar 

  • Guan Y, Xiao H, Sullivan H, Zheng A (2007) Antimicrobial-modified sulfite pulps prepared by in situ copolymerization. Carbohydr Polym 69(4):688–696

    Article  CAS  Google Scholar 

  • Guo Y, Wang X, Shu X, Shen Z, Sun R (2012) Self-assembly and paclitaxel loading capacity of cellulose-graft-poly (lactide) nanomicelles. J Agric Food Chem 60(15):3900–3908

    Article  CAS  Google Scholar 

  • Hiriart-Ramírez E, Contreras-García A, Garcia-Fernandez MJ, Concheiro A, Alvarez-Lorenzo C, Bucio E (2012) Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose 19(6):2165–2177

    Article  Google Scholar 

  • Karoyo AH, Sidhu PS, Wilson L, Hazendonk P (2013) Characterization and dynamic properties for the solid inclusion complexes of β-cyclodextrin and perfluorooctanoic acid. J Phys Chem B 117(27):8269–8282

    Article  CAS  Google Scholar 

  • Khan AM, Shah SS (2009) pH induced partitioning and interactions of ciprofloxacin hydrochloride with anionic surfactant sodium dodecyl sulfate using ultraviolet and fourier transformed infrared spectroscopy study. J Dispers Sci Technol 30(9):1247–1254

    Article  CAS  Google Scholar 

  • Kurkov SV, Ukhatskaya EV, Loftsson T (2011) Drug/cyclodextrin: beyond inclusion complexation. J Incl Phenom Macrocycl Chem 69(3–4):297–301

    Article  CAS  Google Scholar 

  • Larsen FH, Byg I, Damager I, Diaz J, Engelsen SB, Ulvskov P (2011) Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy. Biomacromolecules 12(5):1844–1850

    Article  CAS  Google Scholar 

  • Lee MH, Yoon KJ, Ko S (2000) Grafting onto cotton fiber with acrylamidomethylated β-cyclodextrin and its application. J Appl Polym Sci 78(11):1986–1991

    Article  CAS  Google Scholar 

  • Lee MH, Yoon KJ, Ko S (2001) Synthesis of a vinyl monomer containing β-cyclodextrin and grafting onto cotton fiber. J Appl Polym Sci 80(3):438–446

    Article  CAS  Google Scholar 

  • Leitner J, Zuckerstätter G, Schmied F, Kandelbauer A (2013) Modifications in the bulk and the surface of unbleached lignocellulosic fibers induced by heat treatment without water removal: effects on tensile properties of unrefined kraft pulp. Euro J Wood Wood Prod 71(1):101–110

    Article  CAS  Google Scholar 

  • Li S, Jia N, Ma M, Zhang Z, Liu Q, Sun R (2011) Cellulose-silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86(2):441–447

    Article  CAS  Google Scholar 

  • Li M, Wang LJ, Li D, Cheng YL, Adhikari B (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym 102(1):136–143

    Article  CAS  Google Scholar 

  • Liu S, Sun G (2006) Durable and regenerable biocidal polymers: acyclic N-halamine cotton cellulose. Ind Eng Chem Res 45(19):6477–6482

    Article  CAS  Google Scholar 

  • Lu D, Zhou X, Xing X, Wang X, Liu Z (2004) Quaternary ammonium salt (QAS) grafted cellulose fiber-preparation and anti-bacterial function. Acta Polym Sin 1:107–113

    Google Scholar 

  • Luo J, Sun Y (2006) Acyclic N-halamine-based fibrous materials: preparation, characterization, and biocidal functions. J Polym Sci Part A Polym Chem 44(11):3588–3600

    Article  CAS  Google Scholar 

  • Martel B, Weltrowski M, Ruffin D, Morcellet M (2002) Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: study of the process parameters. J Appl Polym Sci 83(7):1449–1456

    Article  CAS  Google Scholar 

  • Martins NCT, Freire CSR, Pinto RJB, Fernandes SCM, Pascoal Neto C, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19(4):1425–1436

    Article  CAS  Google Scholar 

  • Medronho B, Andrade R, Vivod V, Ostlund A, Miguel MG, Lindman B, Voncina B, Valente AJ (2013) Cyclodextrin-grafted cellulose: physico-chemical characterization. Carbohydr Polym 93(1):324–330

    Article  CAS  Google Scholar 

  • Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, Dordick JS (2011) Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32(36):9557–9567

    Article  CAS  Google Scholar 

  • Peila R, Migliavacca G, Aimone F, Ferri A, Sicardi S (2012) A comparison of analytical methods for the quantification of a reactive β-cyclodextrin fixed onto cotton yarns. Cellulose 19(4):1097–1105

    Article  CAS  Google Scholar 

  • Qian L, Guan Y, Ziaee Z, He B, Zheng A, Xiao H (2009) Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose 16(2):309–317

    Article  CAS  Google Scholar 

  • Ramos AI, Braga TM, Fernandes JA, Silva P, Ribeiro-Claro PJ, Paz FAA, Lopes MDFS, Braga SS (2013) Analysis of the microcrystalline inclusion compounds of triclosan with β-cyclodextrin and its tris-O-methylated derivative. J Pharm Biomed Anal 30:34–43

    Article  Google Scholar 

  • Ren X, Kou L, Kocer HB, Zhu C, Worley SD, Broughton RM, Huang TS (2008) Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids Surf A 317(1):711–716

    Article  CAS  Google Scholar 

  • Rukmani A, Sundrarajan M (2012) Inclusion of antibacterial agent thymol on β-cyclodextrin-grafted organic cotton. J Ind Text 42(2):132–144

    Article  Google Scholar 

  • Sathitsuksanoh N, Zhu Z, Wi S, Percival Zhang YH (2011) Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass. Biotechnol Bioeng 108(3):521–529

    Article  CAS  Google Scholar 

  • Scott CP, Higham PA (2003) Antibiotic bone cement for the treatment of pseudomonas aeruginosa in joint arthroplasty: comparison of tobramycin and gentamicin-loaded cements. J Biomed Mater Res Part B 64(2):94–98

    Article  Google Scholar 

  • Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20(5):341–359

    Article  CAS  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1753

    Article  CAS  Google Scholar 

  • Thatiparti TR, Shoffstall AJ, von Recum HA (2010) Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials 31(8):2335–2347

    Article  CAS  Google Scholar 

  • Voncina B, Le Marechal AM (2005) Grafting of cotton with β-cyclodextrin via poly (carboxylic acid). J Appl Polym Sci 96(4):1323–1328

    Article  CAS  Google Scholar 

  • Yao C, Li X, Neoh KG, Shi Z, Kang ET (2008) Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Membr Sci 320(1):259–267

    Article  CAS  Google Scholar 

  • Zhao D, Zhao L, Zhu CS, Tian ZB, Shen XY (2009) Synthesis and properties of water-insoluble β-cyclodextrin polymer crosslinked by citric acid with PEG-400 as modifier. Carbohydr Polym 78(1):125–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (grant nos. 31200457 and 31270636), NSERC Sentinel Bioactive Paper Network (Canada) and the Fundamental Research Funds for the Central Universities (2013ZZ0072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liying Qian or Huining Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, C., Ye, Y., Qian, L. et al. Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin. Cellulose 21, 1921–1932 (2014). https://doi.org/10.1007/s10570-014-0249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0249-8

Keywords

Navigation