Advertisement

Cellulose

, Volume 21, Issue 3, pp 1289–1303 | Cite as

Multi-technique surface characterization of bio-based films from sisal cellulose and its esters: a FE-SEM, μ-XPS and ToF-SIMS approach

  • Bruno V. M. Rodrigues
  • Elina Heikkilä
  • Elisabete Frollini
  • Pedro Fardim
Original Paper

Abstract

Bio-based films were prepared from LiCl/DMAc solutions containing sisal cellulose esters (acetates, butyrates and hexanoates) with different degrees of substitution (DS 0.7–1.8) and solutions prepared with the cellulose esters and 20 wt% sisal cellulose. A novel approach for characterizing the surface morphology utilized field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and contact angle analysis. XPS and ToF-SIMS were a powerful combination while investigating both the ester group distribution on the surface and effects of cellulose content on the film. The surface coverage by ester aliphatic chains was estimated using XPS measurements. Fibrous structures were observed in the FE-SEM images of the cellulose and bio-based films, most likely because the sisal cellulose chains aggregated during dissolution in LiCl/DMAc. Therefore, the cellulose aggregates remained after the formation of the films and removal of the solvent. The XPS results indicated that the cellulose loading on the longer chain cellulose esters films (DS 1.8) increased the surface coverage by ester aliphatic chains (8.2 % for butyrate and 45 % for hexanoate). However, for the shortest ester chains, the surface coverage decreased (acetate, 42 %). The ToF-SIMS analyses of cellulose acetate and cellulose hexanoate films (DS 1.8) revealed that the cellulose ester groups were evenly distributed across the surface of the films.

Keywords

Sisal cellulose Cellulose esters films Surface analysis XPS ToF-SIMS 

Notes

Acknowledgments

The authors gratefully acknowledge FAPESP (The Sate of São Paulo Research Foundation, Brazil) for the fellowships of B. V. M. R. (proc. 2010/00005-4 and 2012/00813-9) and financial support, as well as the CNPq (National Research Council, Brazil) for the research productivity fellowship of E.F. and financial support. We also thank Top Analytica Ltd (Turku - Finland) for providing us with the XPS and ToF-SIMS instruments and M. Sc. Linus Silvander (Research Assistant at Åbo Akademi Process Chemistry Centre c/o Combustion and Materials Chemistry) for taking the FE-SEM measurements.

References

  1. Akhlaghi S, Berry R, Tam K (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 1–18. doi: 10.1007/s10570-013-9954-y
  2. Almeida EVR, Morgado DL, Ramos LA, Frollini E (2013) Sisal cellulose and its acetates: generation of films and reinforcement in a one-pot process. Cellulose 20(1):453–465. doi: 10.1007/s10570-012-9802-5 CrossRefGoogle Scholar
  3. Ass BAP, Ciacco GT, Frollini E (2006) Cellulose acetates from linters and sisal: correlation between synthesis conditions in DMAc/LiCl and product properties. Bioresour Technol 97(14):1696–1702. doi: 10.1016/j.biortech.2005.10.009 CrossRefGoogle Scholar
  4. Berthold A, Cremer K, Kreuter J (1996) Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for antiinflammatory drugs. J Controlled Release 39(1):17–25. doi: 10.1016/0168-3659(95)00129-8 CrossRefGoogle Scholar
  5. Bodmeier R, Wang H, Dixon DJ, Mawson S, Johnston KP (1995) Polymeric microspheres prepared by spraying into compressed carbon dioxide. Pharm Res 12(8):1211–1217. doi: 10.1023/A:1016276329672 CrossRefGoogle Scholar
  6. Brown NMD, Hewitt JA, Meenan BJ (1992) X-ray photoelectron spectroscopy and infra-red studies of X-ray-induced beam damage of cellulose, ethyl cellulose and ethyl-hydroxyethyl cellulose. Surf Interface Anal 18(3):199–209. doi: 10.1002/sia.740180305 CrossRefGoogle Scholar
  7. Carlsson CMG, Stroem G (1991) Reduction and oxidation of cellulose surfaces by means of cold plasma. Langmuir 7(11):2492–2497. doi: 10.1021/la00059a016 CrossRefGoogle Scholar
  8. Cheremisinoff NP (2000) Chapter 3—Evaporating and drying equipment. In: Handbook of chemical processing equipment. Butterworth-Heinemann, Woburn, pp 94–161. doi: 10.1016/B978-075067126-2.50004-9
  9. Crépy L, Chaveriat L, Banoub J, Martin P, Joly N (2009) Synthesis of cellulose fatty esters as plastics—influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem 2(2):165–170. doi: 10.1002/cssc.200800171 CrossRefGoogle Scholar
  10. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007a) Bi-phobic cellulose fibers derivatives via surface trifluoropropanoylation. Langmuir 23(21):10801–10806. doi: 10.1021/la7017192 CrossRefGoogle Scholar
  11. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007b) Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers. J Colloid Interface Sci 316(2):360–366. doi: 10.1016/j.jcis.2007.09.002 CrossRefGoogle Scholar
  12. Dorris GM, Gray D (1978) The surface analysis of paper and wood fibres by ESCA (electron spectroscopy for chemical analysis). i. Application to cellulose and lignin. Cellul Chem Technol 12:14. doi: 10.1007/BF00193868 Google Scholar
  13. Edgar K (2007) Cellulose esters in drug delivery. Cellulose 14(1):49–64. doi: 10.1007/s10570-006-9087-7 CrossRefGoogle Scholar
  14. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26(9):1605–1688. doi: 10.1016/s0079-6700(01)00027-2 CrossRefGoogle Scholar
  15. El Seoud OA, Marson GA, Ciacco GT, Frollini E (2000) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201(8):882–889. doi: 10.1002/(SICI)1521-3935(20000501)201:8<882:AID-MACP882>3.0.CO;2-I CrossRefGoogle Scholar
  16. Fardim P, Holmbom B (2005) ToF-SIMS imaging: a valuable chemical microscopy technique for paper and paper coatings. Appl Surf Sci 249(1–4):393–407. doi: 10.1016/j.apsusc.2004.12.041 CrossRefGoogle Scholar
  17. Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Fardim P, Holmbom B (2006) Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. J Colloid Interface Sci 301(1):205–209. doi: 10.1016/j.jcis.2006.04.074 CrossRefGoogle Scholar
  18. Goacher RE, Edwards EA, Yakunin AF, Mims CA, Master ER (2012) Application of time-of-flight-secondary ion mass spectrometry for the detection of enzyme activity on solid wood substrates. Anal Chem 84(10):4443–4451. doi: 10.1021/ac3005346 CrossRefGoogle Scholar
  19. Gomes GS, de Almeida AT, Kosaka PM, Rogero SO, Cruz AS, Ikeda TI, Petri DFS (2007) Cellulose acetate propionate coated titanium: characterization and biotechnological application. Mater Res 10(4):5. doi: 10.1590/S1516-14392007000400023 CrossRefGoogle Scholar
  20. Grundke K, Bogumil T, Werner C, Janke A, Pöschel K, Jacobasch HJ (1996) Liquid-fluid contact angle measurements on hydrophilic cellulosic materials. Colloids Surf A 116(1–2):79–91. doi: 10.1016/0927-7757(96)03587-X CrossRefGoogle Scholar
  21. Guezguez I, Mrabet B, Ferjani E (2013) XPS and contact angle characterization of surface modified cellulose acetate membranes by mixtures of PMHS/PDMS. Desalination 313:208–211. doi: 10.1016/j.desal.2012.11.018 CrossRefGoogle Scholar
  22. Heinze T, Liebert TF, Pfeiffer KS, Hussain MA (2003) Unconventional cellulose esters: synthesis. Characterization and structure-property relations. Cellulose 10(3):283–296. doi: 10.1023/a:1025117327970 CrossRefGoogle Scholar
  23. Jung S, Foston M, Kalluri UC, Tuskan GA, Ragauskas AJ (2012) 3D chemical image using TOF-SIMS revealing the biopolymer component spatial and lateral distributions in biomass. Angew Chem Int Ed 51(48):12005–12008. doi: 10.1002/anie.201205243 CrossRefGoogle Scholar
  24. Kim J, Cai Z, Chen Y (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotechnol Eng Med 1 (1). doi: 10.1115/1.4000062
  25. Kovač J (2011) Surface characterization of polymers by XPS and SIMS techniques. Materiali in Tehnologije 45(3):191–197Google Scholar
  26. Lacerda TM, Zambon MD, Frollini E (2013) Effect of acid concentration and pulp properties on hydrolysis reactions of mercerized sisal. Carbohydr Polym. doi: 10.1016/j.carbpol.2012.10.039
  27. Meier MM, Kanis LA, Soldi V (2004) Characterization and drug-permeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent. Int J Pharmaceutics 278(1):99–110. doi: 10.1016/j.ijpharm.2004.03.005 CrossRefGoogle Scholar
  28. Mohanty AK, Wibowo A, Misra M, Drzal LT (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A Appl Sci Manuf 35(3):363–370. doi: 10.1016/j.compositesa.2003.09.015 CrossRefGoogle Scholar
  29. Morgado DL, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18(3):699–712. doi: 10.1007/s10570-011-9516-0 CrossRefGoogle Scholar
  30. Morgado DL, Rodrigues BVM, Almeida EVR, El Seoud OA, Frollini E (2013) Bio-based films from linter cellulose and its acetates: formation and properties. Mater 6 (Adv Cellul Mater):25. doi: 10.3390/ma6062410
  31. Orblin E, Fardim P (2010) Surface chemistry of deinked pulps as analysed by XPS and ToF-SIMS. Surf Interface Anal 42(12–13):1712–1722. doi: 10.1002/sia.3500 CrossRefGoogle Scholar
  32. Orblin E, Eta V, Fardim P (2011) Surface chemistry of vessel elements by FE-SEM, μ-XPS and ToF-SIMS. Holzforschung 65(5):681–688. doi: 10.1515/HF.2011.064 CrossRefGoogle Scholar
  33. Östlund Å, Idström A, Olsson C, Larsson P, Nordstierna L (2013) Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose:1-11. doi: 10.1007/s10570-013-9982-7
  34. Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system. Biomacromolecules 6(5):2638–2647. doi: 10.1021/bm0400776 CrossRefGoogle Scholar
  35. Ramos L, Morgado D, El Seoud O, da Silva V, Frollini E (2011a) Acetylation of cellulose in LiCl-N, N -dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18(2):385–392. doi: 10.1007/s10570-011-9496-0 CrossRefGoogle Scholar
  36. Ramos LA, Morgado DL, Gessner F, Frollini E, El Seoudb OA (2011b) A physical organic chemistry approach to dissolution of cellulose: effects of cellulose mercerization on its properties and on the kinetics of its decrystallization. Arkivoc 7:416–425. doi: 10.3998/ark.5550190.0012.734 CrossRefGoogle Scholar
  37. Regiani AM, Frollini E, Marson GA, Guilherme M, Seoud OAEL (1999) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci, Part A: Polym Chem 37(9):1357–1363. doi: 10.1002/(SICI)1099-0518(19990501)37:9<1357:AID-POLA16>3.0.CO;2-Y CrossRefGoogle Scholar
  38. Saito K, Kato T, Takamori H, Kishimoto T, Fukushima K (2005) A new analysis of the depolymerized fragments of lignin polymer using ToF-SIMS. Biomacromolecules 6(5):2688–2696CrossRefGoogle Scholar
  39. Saito K, Kato T, Takamori H, Kishimoto T, Yamamoto A, Fukushima K (2006) A new analysis of the depolymerized fragments of lignin polymer in the plant cell walls using ToF-SIMS. Appl Surf Sci 252(19):6734–6737. doi: 10.1016/j.apsusc.2006.02.163 CrossRefGoogle Scholar
  40. Sibani B, Sandhyamayee S, Sabita P, Bijay MK (2012) Sisal fiber: a potential raw material for handmade paper. IPPTA 24(2):8Google Scholar
  41. Smith M (1997) The U.S. Paper industry and sustainable production: an argument for restructuring United States of AmericaGoogle Scholar
  42. TAPPI P (1994) Surface Wettability of Paper. T458 om-94Google Scholar
  43. Tokareva EN, Pranovich AV, Fardim P, Daniel G, Holmbom B (2007) Analysis of wood tissues by time-of-flight secondary ion mass spectrometry. Holzforschung 61(6):647–655. doi: 10.1515/HF.2007.119 CrossRefGoogle Scholar
  44. Tokareva EN, Pranovich AV, Holmbom BR (2011) Characteristic fragment ions from lignin and polysaccharides in ToF-SIMS. Wood Sci Technol 45(4):767–785. doi: 10.1007/s00226-010-0392-9 CrossRefGoogle Scholar
  45. Vo LTT, Široká B, Manian AP, Duelli H, MacNaughtan B, Noisternig MF, Griesser UJ, Bechtold T (2013) All-cellulose composites from woven fabrics. Compos Sci Technol 78:30–40. doi: 10.1016/j.compscitech.2013.01.018 CrossRefGoogle Scholar
  46. Wang FJ, Yang YY, Zhang XZ, Zhu X, Chung TS, Moochhala S (2002) Cellulose acetate membranes for transdermal delivery of scopolamine base. Mater Sci Eng, C 20(1–2):93–100. doi: 10.1016/S0928-4931(02)00018-8 CrossRefGoogle Scholar
  47. Yang ZY, Wang WJ, Shao ZQ, Zhu HD, Li YH, Wang FJ (2013) The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose 20(1):159–168. doi: 10.1007/s10570-012-9796-z CrossRefGoogle Scholar
  48. Zhang L, Ruan D, Zhou J (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind Eng Chem Res 40(25):5923–5928. doi: 10.1021/ie0010417 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, Institute of Chemistry of São CarlosUniversity of São PauloSão CarlosBrazil
  2. 2.Laboratory of Fibre and Cellulose TechnologyÅbo Akademi UniversityTurku/ÅboFinland
  3. 3.Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz UniversityJiddaSaudi Arabia

Personalised recommendations