Advertisement

Cellulose

, Volume 21, Issue 3, pp 1561–1571 | Cite as

Carboxymethylated nanofibrillated cellulose: rheological studies

  • Ali Naderi
  • Tom LindströmEmail author
  • Jonas Sundström
Original Paper

Abstract

The rheological properties of carboxymethylated nanofibrillated cellulose (NFC), investigated with controlled shear rate- and oscillatory measurements, are reported for the first time. It was shown that the rheological properties of the studied system are similar to those reported for other NFC systems. The carboxymethylated NFC systems showed among other things high elasticity and a shear thinning behaviour when subjected to increasing shear rates. Further, the shear viscosity and storage modulus of the system displayed power-law relations with respect to the dry content of the NFC suspension. The exponential values, 2 and 2.4 respectively, were found to be in good agreement with both theoretical predictions and published experimental work. Furthermore, it was found that the pulp consistency at which NFC is produced affects the properties of the system. The rheological studies imply that there exists a critical pulp concentration below which the efficiency of the delamination process diminishes; the same adverse effect is also observed when the critical concentration is significantly exceeded due to a lower energy input during delamination.

Keywords

Nanofibrillated cellulose Carboxymethylation Gel Rheology Viscosity Homogenization 

Notes

Acknowledgments

Ann-Marie Runebjörk, Åsa Blademo, and Åsa Engström are thanked for their competent supporting work. Mikael Ankerfors is thanked for helpful discussions. Billerud-Korsnäs, Borregaard, De la Rue, Hansol, Holmen, Kemira, Korsnäs, Metsä Group, Stora Enso, Södra, UPM, and Evergreen Packaging are acknowledged for their financial support.

References

  1. Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83. doi: 10.1016/j.carbpol.2013.08.032 CrossRefGoogle Scholar
  2. Buscall R, McGowan JI, Morton-Jones AJ (1993) The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J Rheol 37(4):621–641. doi: 10.1122/1.550387 CrossRefGoogle Scholar
  3. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72CrossRefGoogle Scholar
  4. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell Univ Press, IthacaGoogle Scholar
  5. Doi M, Edwards SF (1978) Dynamics of rod-like macromolecules in concentrated solution Part 1. J Chem Soc Faraday Trans 2(74):560–570. doi: 10.1039/f29787400560 CrossRefGoogle Scholar
  6. Dzuy NQ, Boger DV (1983) Yield stress measurement for concentrated suspensions. J Rheol 27(4):321–349. doi: 10.1122/1.549709 CrossRefGoogle Scholar
  7. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  8. Fukuzumi H, Saito T, Isogai A (2012) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177CrossRefGoogle Scholar
  9. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Symp 37:797–813Google Scholar
  10. Iotti M, Gregersen OW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145. doi: 10.1007/s10924-010-0248-2 CrossRefGoogle Scholar
  11. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. doi: 10.1039/c0nr00583e CrossRefGoogle Scholar
  12. Jampala SN, Manolache S, Gunasekaran S, Denes FS (2005) Plasma-enhanced modification of xanthan gum and its effect on rheological properties. J Agric Food Chem 53:3618–3625. doi: 10.1021/jf0479113 CrossRefGoogle Scholar
  13. Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19(6):1807–1819. doi: 10.1007/s10570-012-9766-5 CrossRefGoogle Scholar
  14. Kim C, Yoo B (2006) Rheological properties of rice starch-xanthan gum mixtures. J Food Eng 75:120–128. doi: 10.1016/j.jfoodeng.2005.04.002 CrossRefGoogle Scholar
  15. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  16. Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433. doi: 10.1007/s10570-007-9184-2 CrossRefGoogle Scholar
  17. Lindström T, Aulin C, Naderi A, Ankerfors M (2014) Microfibrillated cellulose. In: Encyclopedia of polymer science and technology, John Wiley & Sons Inc., Hoboken, pp 1–34. doi: 10.1002/0471440264.pst614
  18. Lucian LA, Rojas OJ (2009) The nanoscience and technology of renewable biomaterials. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  19. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  20. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi: 10.1021/bm061215p CrossRefGoogle Scholar
  21. Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20(2):727–740. doi: 10.1007/s10570-013-9862-1 CrossRefGoogle Scholar
  22. Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19(3):647–659. doi: 10.1007/s10570-012-9661-0 CrossRefGoogle Scholar
  23. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809. doi: 10.1039/c1sm06050c CrossRefGoogle Scholar
  24. Sandquist D (2013) New horizons for microfibrillated cellulose. Appita J 66:156–162Google Scholar
  25. Siquiera G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymer 2(4):728–765CrossRefGoogle Scholar
  26. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  27. Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32CrossRefGoogle Scholar
  28. Tatsumi D, Inaba D, Matsumoto T (2008) Layered structure and viscoelastic properties of wet pulp fiber networks. J Soc Rheol Jpn 36:235–239. doi: 10.1678/rheology.36.235 CrossRefGoogle Scholar
  29. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Symp 37:815–827Google Scholar
  30. Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173CrossRefGoogle Scholar
  31. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795. doi: 10.1021/la702481v CrossRefGoogle Scholar
  32. Walls HJ, Caines SB, Sanchez AM, Khan SA (2003) Yield stress and wall slip phenomena in colloidal silica gels. J Rheol 47(4):847–868. doi: 10.1122/1.1574023 CrossRefGoogle Scholar
  33. Yoshimura AS, Prud homme RK, Princen HM, Kiss AD (1987) A comparison of techniques for measuring yield stresses. J Rheol 31(8):699–710. doi: 10.1122/1.549956 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Innventia ABStockholmSweden
  2. 2.BiMaC InnovationKTH – Royal Institute of TechnologyStockholmSweden

Personalised recommendations