Advertisement

Cellulose

, Volume 21, Issue 3, pp 1757–1767 | Cite as

Effect of cellulose nanofibers on induced polymerization of aniline and formation of nanostructured conducting composite

  • Haipeng Yu
  • Peng Chen
  • Wenshuai Chen
  • Yixing Liu
Original Paper

Abstract

Cellulose nanofibers (CNFs), derived from the most abundant and renewable biopolymer, are known as natural one-dimensional nanomaterials because of their high aspect ratio. CNFs also are rich in hydroxyl groups, offering opportunities for functionalization toward development of high-value nanostructured composites. Herein, CNFs were extracted from poplar wood powder by chemical pretreatment combined with high-intensity ultrasonication, and then coated with polyaniline (PANI) through in situ polymerization. The PANI-coated CNFs formed nanostructured frameworks around PANI, thereby conferring the CNF/PANI composite with stability and higher charge transport. The optimum PANI content to achieve maximum conductivity of CNF/PANI composites was determined. The morphology, crystall structure, chemical composition, and conductivity of the samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and four-point probe method, respectivily. Our results demonstrated that CNFs can be effective as a template for a flexible and stable conducting polymer to form higher-order nanostructures.

Keywords

Cellulose nanofibers Polyaniline Conducting composite Polymerization 

Notes

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (DL12DB01), and was also supported by the Program for New Century Excellent Talents in University (NCET-10-0313).

References

  1. Abdiryim T, Zhang XG, Jamal R (2005) Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater Chem Phys 90(2–3):367–372CrossRefGoogle Scholar
  2. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29(7):699–766CrossRefGoogle Scholar
  3. Al-Ahmed A, Mohammad F, Zaki Ab Rahman M (2004) Composites of polyaniline and cellulose acetate: preparation, characterization, thermo-oxidative degradation and stability in terms of DC electrical conductivity retention. Synth Met 144(1):29–49CrossRefGoogle Scholar
  4. Bhadra S, Singha NK, Khastgir D (2007) Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline. J Appl Polym Sci 104(3):1900–1904CrossRefGoogle Scholar
  5. Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRefGoogle Scholar
  6. Chen P, Yu HP, Liu YX, Chen WS, Wang XQ, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157CrossRefGoogle Scholar
  7. Chen WS, Li Q, Wang YC, Yi X, Zeng J, Yu HP, Liu YX, Li J (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7(1):154–161CrossRefGoogle Scholar
  8. Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, MacDiarmid AG, Park YW, Shirakawa H (1978) Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J Am Chem Soc 100(3):1013–1015CrossRefGoogle Scholar
  9. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRefGoogle Scholar
  10. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  11. Ferraz N, Strømme M, Fellström B, Pradhan S, Nyholm L, Mihranyan A (2012) In vitro and in vivo toxicity of rinsed and aged nanocellulose–polypyrrole composites. J Biomed Mater Res, Part A 100A(8):2128–2138CrossRefGoogle Scholar
  12. French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. doi: 10.1007/s10570-013-0030-4 Google Scholar
  13. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588CrossRefGoogle Scholar
  14. Gelin K, Mihranyan A, Razaq A, Nyholm L, Strømme M (2009) Potential controlled anion absorption in a novel high surface area composite of Cladophora cellulose and polypyrrole. Electrochim Acta 54(12):3394–3401CrossRefGoogle Scholar
  15. Huang J, Kaner RB (2003) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126(3):851–855CrossRefGoogle Scholar
  16. Jin Z, Su Y, Duan Y (2001) Development of a polyaniline-based optical ammonia sensor. Sensor Actuators B Chem 72(1):75–79CrossRefGoogle Scholar
  17. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113CrossRefGoogle Scholar
  18. Li J, Qian XR, Wang LJ, An XH (2010) XPS characterization and percolation behavior of polyaniline-coated conductive paper. Bioresources 5(2):712–726Google Scholar
  19. Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L-S, Seppälä J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J 49(2):335–344CrossRefGoogle Scholar
  20. MacDiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18(1–3):285–290CrossRefGoogle Scholar
  21. Marins JA, Soares BG, Dahmouche K, Ribeiro SJL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18(5):1285–1294CrossRefGoogle Scholar
  22. Mihranyan A, Nyholm L, Bennett AEG, Strømme M (2008) A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose. J Phys Chem B 112(39):12249–12255 CrossRefGoogle Scholar
  23. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRefGoogle Scholar
  24. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9(10):3635–3639CrossRefGoogle Scholar
  25. Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182CrossRefGoogle Scholar
  26. Olsson H, Nyström G, Strømme M, Sjödin M, Nyholm L (2011) Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device. Electrochem Commun 13(8):869–871CrossRefGoogle Scholar
  27. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499CrossRefGoogle Scholar
  28. Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci 11:2636–2657CrossRefGoogle Scholar
  29. Proń A, Zagorska M, Nicolau Y, Genoud F, Nechtschein M (1997) Highly conductive composites of polyaniline with plasticized cellulose acetate. Synthetic Met 84(1–3):89–90Google Scholar
  30. Razaq A, Mihranyan A, Welch K, Nyholm L, Strømme M (2009) Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites. J Phys Chem B 113(2):426–433CrossRefGoogle Scholar
  31. Razaq A, Nyström G, Strømme M, Mihranyan A, Nyholm L (2011) High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS ONE 6(12):e29243CrossRefGoogle Scholar
  32. Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A (2012) Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-Cladophora nanocellulose composite electrodes. Adv Energy Mater 2(4):445–454CrossRefGoogle Scholar
  33. Rubino S, Razaq A, Nyholm L, Strømme M, Leifer K et al (2010) Spatial mapping of elemental distributions in polypyrrole-cellulose nanofibers using energy-filtered transmission electron microscopy. J Phys Chem B 114(43):13644–13649CrossRefGoogle Scholar
  34. Rudge A, Davey J, Raistrick I, Gottesfeld S (1994) Conducting polymers as active materials in electrochemical capacitors. J Power Sources 47(1–2):89–107CrossRefGoogle Scholar
  35. Rußler A, Sakakibara K, Rosenau T (2011) Cellulose as matrix component of conducting films. Cellulose 18(4):937–944CrossRefGoogle Scholar
  36. Shariki S, Liew SY, Thielemans W, Walsh DA, Cummings CY, Rassaei L, Wasbrough MJ, Edler KJ, Bonné Michael J, Marken F (2011) Tuning percolation speed in layer-by-layer assembled polyaniline–nanocellulose composite films. J Solid State Electrochem 15(11–12):2675–2681CrossRefGoogle Scholar
  37. Shi ZJ, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5(8):3194–3201CrossRefGoogle Scholar
  38. Tkalya E, Ghislandi M, Thielemans W, van der Schoot P, de With G, Koning C (2013) Cellulose nanowhiskers templating in conductive polymer nanocomposites reduces electrical percolation threshold 5-fold. ACS Macro Lett 2(2):157–163CrossRefGoogle Scholar
  39. Wang HH, Zhu EW, Yang JZ, Zhou PP, Sun DP, Tang WH (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116(24):13013–13019CrossRefGoogle Scholar
  40. Zhang LX, Zhang LJ, Wan MX, Wei Y (2006) Polyaniline micro/nanofibers doped with saturation fatty acid. Synthetic Met 156(5–6):454–458CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Key Laboratory of Bio-based Material Science and Technology, Ministry of EducationNortheast Forestry UniversityHarbinChina
  2. 2.College of material science and engineeringNortheast Forestry UniversityHarbinChina

Personalised recommendations