, Volume 21, Issue 3, pp 1553–1559 | Cite as

Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition

  • Hayaka Fukuzumi
  • Reina Tanaka
  • Tsuguyuki Saito
  • Akira Isogai
Original Paper


Dispersion stability of TEMPO-oxidized cellulose nanofibrils (TOCNs) in water was investigated through both experimental and theoretical analyses to elucidate the critical aggregation concentration of different salts. The 0.1 wt% TOCN/water dispersions with various NaCl concentrations were evaluated by measuring light transmittance, viscosity under steady-shear flow, and the weight fraction of TOCN that had aggregated. Homogeneous TOCN/water dispersion turned to gel as the NaCl concentration increased. The TOCN dispersion maintained its homogeneous state up to 50 mM NaCl, but aggregated gel particles were formed at 100 mM NaCl. The mixture became separated into two phases (gel and supernatant) at ≥200 mM NaCl. Theoretical analysis using ζ-potentials of TOCN elements in the dispersions revealed that the aggregation behavior upon NaCl addition could be explained well in terms of the interaction potential energy between two cylindrical rods based on the Derjaguin–Landau–Verwey–Overbeek theory. The experiments were extended to analyze critical aggregation concentrations of MgCl2 and CaCl2 for the 0.1 wt% TOCN dispersion. In the case of divalent electrolytes, TOCN elements began to form aggregated gel particles at salt concentrations of 2–4 mM, corresponding to the critical aggregation concentration predicted by the empirical Schultz-Hardy rule.


TEMPO-oxidized cellulose nanofibril DLVO theory Critical aggregation concentration Schulz–Hardy rule 



This research was supported by Grants-in-Aid for Scientific Research (Grants 21228007 and 25-7327) from the Japan Society for the Promotion of Science (JSPS). We thank Associate Prof. Jun Araki of Shinshu University for helpful advice concerning theoretical calculations.


  1. Araki J (2013) Electrostatic or steric?—preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125–4141. doi: 10.1039/C3SM27514K CrossRefGoogle Scholar
  2. Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016. doi: 10.1021/ma000417p CrossRefGoogle Scholar
  3. Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloid Surf A 377:297–303. doi: 10.1016/j.colsurfa.2011.01.003 CrossRefGoogle Scholar
  4. Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123. doi: 10.1021/la2035449 CrossRefGoogle Scholar
  5. Crawford RJ, Edler KJ, Lindhoud S, Scott JL, Unali G (2012) Formation of shear thinning gels from partially oxidised cellulose nanofibrils. Green Chem 14:300–303. doi: 10.1039/C2GC16302K CrossRefGoogle Scholar
  6. Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32. doi: 10.1023/A:1009260511939 CrossRefGoogle Scholar
  7. Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338. doi: 10.1021/la201947x CrossRefGoogle Scholar
  8. Hardy WB (1899) A preliminary investigation of the conditions which determine the stability of irreversible hydrosols. Proc R Soc Lond A 66:110–125. doi: 10.1098/rspl.1899.0081 Google Scholar
  9. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi: 10.1039/C0NR00583E CrossRefGoogle Scholar
  10. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Elsevier, USAGoogle Scholar
  11. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  12. Kratohvil S, Janauer GE, Matijević E (1969) Coagulation of microcrystalline cellulose dispersions. J Colloid Interface Sci 29:187–193. doi: 10.1016/0021-9797(69)90185-4 CrossRefGoogle Scholar
  13. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi: 10.1016/j.carbpol.2012.05.026 CrossRefGoogle Scholar
  14. Lindström T, Soremark C (1976) Flocculation of cellulosic dispersions with alginates in the presence of divalent metal ions. J Colloid Interface Sci 55:69–72. doi: 10.1016/0021-9797(76)90009-6 CrossRefGoogle Scholar
  15. Nemoto J, Soyama T, Saito T, Isogai A (2012) Nanoporous networks prepared by simple air drying of aqueous TEMPO-oxidized cellulose nanofibril dispersions. Biomacromolecules 13:943–946. doi: 10.1021/bm300041k CrossRefGoogle Scholar
  16. Notley SM, Pettersson B, Wågberg L (2004) Direct measurement of attractive van der Waals’ forces between regenerated cellulose surfaces in an aqueous environment. J Am Chem Soc 126:13930–13931. doi: 10.1021/ja045992d CrossRefGoogle Scholar
  17. Overbeek JTG (1980) The rule of Schulze and Hardy. Pure Appl Chem 52:1151–1161. doi: 10.1351/pac198052051151 CrossRefGoogle Scholar
  18. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi: 10.1021/bm061215p CrossRefGoogle Scholar
  19. Qi ZD, Saito T, Fan Y, Isogai A (2012) Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromolecules 13:553–558. doi: 10.1021/bm201659b CrossRefGoogle Scholar
  20. Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164. doi: 10.1039/DF9511100158 CrossRefGoogle Scholar
  21. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. doi: 10.1021/bm0497769 CrossRefGoogle Scholar
  22. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809. doi: 10.1039/C1SM06050C CrossRefGoogle Scholar
  23. Sano M, Okamura J, Shinkai S (2001) Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze–Hardy rule. Langmuir 17:7172–7173. doi: 10.1021/la010698+ CrossRefGoogle Scholar
  24. Schulze H (1882) Schwefelarsen in wässriger Lösung. J Prakt Chem 25:431–452. doi: 10.1002/prac.18820250142 CrossRefGoogle Scholar
  25. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849. doi: 10.1021/bm2017542 CrossRefGoogle Scholar
  26. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  27. Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6:1391–1400. doi: 10.1039/B918281K CrossRefGoogle Scholar
  28. Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16:499–508. doi: 10.1002/adfm.200500161 CrossRefGoogle Scholar
  29. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85. doi: 10.1007/s10570-008-9244-2 CrossRefGoogle Scholar
  30. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795. doi: 10.1021/la702481v CrossRefGoogle Scholar
  31. Wierenga AM, Philipse AP (1998) Low-shear viscosity of isotropic dispersions of (Brownian) rods and fibres; a review of theory and experiments. Colloid Surf A 137:355–372. doi: 10.1016/S0927-7757(97)00262-8 CrossRefGoogle Scholar
  32. Tanaka R, Saito T, Ishii D, Isogai A, unpublished data Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hayaka Fukuzumi
    • 1
  • Reina Tanaka
    • 1
  • Tsuguyuki Saito
    • 1
  • Akira Isogai
    • 1
  1. 1.Department of Biomaterials Science, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations