Skip to main content
Log in

Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch Pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This work investigated the effect of using Kenaf bast fibre kraft pulps compared to Scotch Pine kraft pulps for producing microfibrillated cellulose (MFC) and its employment for improving mechanical and physical properties of handsheets made from unbleached kraft hardwood pulp. It was shown that MFC based on Kenaf fibres can be produced at higher consistencies [>5 % (w/w)] compared to when Scotch Pine is employed [≈2 % (w/w)] as raw material. The possibility of using a higher consistency when processing Kenaf is beneficial for the processing in microfluidizers. The rheological properties of the products were shown to be consistent with what is known for MFC-based systems. The studies indicate that the mechanical properties of handsheets from unbleached kraft hardwood pulp can be improved by replacing part of the unbleached kraft hardwood pulp fibres with either unbleached kraft Kenaf pulp or unbleached Scotch Pine kraft pulp. However, the same levels of improvements were obtained when using only a small amount [≈6 % (w/w)] of MFC based on Kenaf or Scotch Pine, when introduced into the system either as a dry strength additive or by coating pre-made handsheets. Finally, it was shown that the incorporation of MFC in handsheets decreases the air-permeability; this effect became amplified when the MFC was applied as a coating onto the handsheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97:725–730

    Article  CAS  Google Scholar 

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier J-L (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

    Article  CAS  Google Scholar 

  • Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314

    Article  CAS  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Bahtoee A, Zargari K, Baniani E (2012) An investigation on fibre production of different Kenaf (Hibiscus cannabinus L.) genotypes. World Appl Sci J 16(1):63–66

    Google Scholar 

  • Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092

    Article  CAS  Google Scholar 

  • Eriksen Ø, Gregersen WØ, Syverud K (2008) The effect of MFC on handsheet surface and printing properties. In: Proceedings, progress in paper physics seminar, June 2–5, Espoo, Finland, pp 167–170

  • Faruq G, Alamgir MA, Rahman MM, Subha B, Motior MR (2011) Evaluation of genetic variability of Kenaf (Hibiscus cannabinus L.) from different geographic origins using morpho-agronomic traits and multivariate analysis. AJCS 5(13):1882–1890

    Google Scholar 

  • Hassan EA, Hassan ML, Oksman K (2011) Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci 43(1):76–82

    CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibres. Eur Polymer J 43:3434–3441

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9(3):1022–1026

    Article  CAS  Google Scholar 

  • Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Šimon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S (2012) Renewable fibres and bio-based materials for packaging applications–a review of recent developments. BioResources 7(2):2506–2552

    Google Scholar 

  • Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached Kenaf bast (Hibiscus cannabinus) pulp and nanofibres. BioResources 4(2):626–639

    CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010a) Preparation of cellulose nanofibres with hydrophobic surface characteristics. Cellulose 17:299–307

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Tahir PM, Zaini LH, Azry SS, Makinejad MD (2010b) Characteristics of nanofibres extracted from Kenaf core. BioResources 5(4):2556–2566

    Google Scholar 

  • Jonoobi M, Harun J, Tahir PM, Shakeri A, Saiful Azry S, Davoodi Makinejad M (2011) Physicochemical characterization of pulp and nanofibres from Kenaf stem. Mater Lett 65:1098–1100

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from Kenaf bast fibres. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorri A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5546

    Article  CAS  Google Scholar 

  • Lindström T, Winter L (1988) Mikrofibrillärcellulosa som komponent vid papperstillverkning. STFI-meddelande C159

  • Manninen M, Kajanto I, Happonen J, Paltakari J (2011) The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper. Nord Pulp Pap Res J 26(3):297–305

    Article  CAS  Google Scholar 

  • Missoum K, Martoïa F, Belgacem MN, Bras J (2013) Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Ind Crops Prod 48:98–105

    Article  CAS  Google Scholar 

  • Mossello AA, Harun J, Tahir PM, Resalati H, Ibrahim R, Fallah Shamsi SR, Mohmamed AZ (2010) A review of literatures related of using Kenaf for pulp production (beating, fractionation, and recycled fibre). Mod Appl Sci 4(9):21–29

    Google Scholar 

  • Orhan M (2010) Polylactide foams reinforced with wood fibres or microfibrillated cellulose. Uppsala University, Faculty of Science and Technology. Master Thesis, p 8

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibres: solving global issues. Mater Today 9(3):40–50

    Article  CAS  Google Scholar 

  • Rezayati Charani P (2013) Production and using of Kenaf nanofibers for improvement of kraft paper properties. Gorgan University of agricultural sciences and natural resources. Doctoral Thesis, p 63

  • Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from Kenaf unbleached pulp. Cellulose 20(2):727–740

    Article  CAS  Google Scholar 

  • Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterization of rheological behaviour. Cellulose 19(3):647–659

    Article  CAS  Google Scholar 

  • Saarinen T, Lille M, Seppälä J (2009) Technical aspects on rheological characterization of microfibrillar cellulose water suspensions. Ann Trans Nord Rheol Soc 17:121–128

    CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Sarwar Jahan M, Saeed A, Ni Y (2012) Extraction of cellulose microfibrils from non-wood lignocellulose material using biorefinery concept. Lignocellulose 1(3):185–195

    Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198

    Article  CAS  Google Scholar 

  • Shakhes J, Zeinaly F, Marandi MAB, Saghafi T (2012) Effects of harvest time and cultivar on yield and physical properties fibres of Kenaf (Hibiscus cannabinus L.). Afr J Biochem Res 6(6):69–74

    Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and applications. Gulf Professional Publishing. Hemistry: fundamentals and applications. Gulf Professional Publishing. p 133

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010a) Aspects of raw materials and processing conditions on the production and utilization of microfibrillated cellulose. International Conference on Nanotechnology for the Forest Products Industry, Otaniemi

    Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010c) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968

    Article  CAS  Google Scholar 

  • Spence KL, Rojas OJ, Pawlak JJ, Venditti RA, Habibi Y (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  • Surip SN, Wan Jaafar WNR, Azmi NN, Anwar UMK (2012) Microscopy observation on nanocellulose from Kenaf fibre. Adv Mat Res 488–489:72–75

    Article  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of Kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Article  CAS  Google Scholar 

  • Tanaka H, Ödberg L, Wågberg L, Lindström T (1990) Adsorption of cationic polyacrylamides onto monodisperse polystyrene latices and cellulose fiber: effect of molecular weight and charge density of cationic polyacrylamides. J Colloid Interface Sci 134(1):219–228

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Villar JC, Revilla E, Gómez N, Carbajo JM, Simón JL (2009) Improving the use of Kenaf for kraft pulping by using mixtures of bast and core fibres. Ind Crops Prod 29:301–307

    Article  CAS  Google Scholar 

  • Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173

    Google Scholar 

  • Zhang J, Song H, Lin L, Zhuang J, Pang C, Liu S (2012) Microfibrillated cellulose from bamboo pulp and its properties. Biomass Bioenergy 39:78–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rezayati Charani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezayati Charani, P., Dehghani-Firouzabadi, M., Afra, E. et al. Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch Pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose 20, 2559–2567 (2013). https://doi.org/10.1007/s10570-013-9998-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9998-z

Keywords

Navigation