Skip to main content
Log in

Degradation of cellulosic insulation in power transformers: a SEC–MALLS study of artificially aged transformer papers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The molecular weight distributions of artificially aged transformer papers were studied using SEC–MALLS with 0.5 % DMAc/LiCl as solvent, providing chain length distributions and averages. The slow dissolution and presence of non-cellulosic contaminants tend in some cases to introduce errors in the DPw estimates, and a modified data processing procedure was developed to correct for extraneous scattering. Data were compared to the intrinsic viscosities obtained in 0.5 M Cuen and the ‘viscosimetric DP’ calculated thereof according to ISO 5351. DPvisc was 2–3 times lower than the weight average DP (DPw), but closer to or slightly above the number average DP (DPn) obtained by SEC–MALLS in the case of pure cellulose. Ageing of transformer papers were in some cases associated with changes in the polydispersity (DPw/DPn). The apparent degradation rate (defined as δ(1/DP)/δt) gradually decreased with time, resulting in a tendency for a ‘level-off’ DP in the range 200–300 for DPvisc and DPn, and roughly 1,000 for DPw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali M, Eley C, Emsley AM, Heywood R, Xaio X (1996) Measuring and understanding the ageing of kraft insulating paper in power transformers. IEEE Electr Insul M 12:28–34

    Article  Google Scholar 

  • ASTMD4243-99 (2004) Standard test method for measurement of average viscometric degree of polymerization of new and aged electrical papers and boards. ASTM International. doi:10.1520/D4243-99R04E01

  • Calvini P, Gorassini A, Merlani A (2008) On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation. Cellulose 15:193–203. doi:10.1007/s10570-007-9162-8

    Article  CAS  Google Scholar 

  • Ding HZ, Wang ZD (2008) On the degradation evolution equations of cellulose. Cellulose 15:205–224. doi:10.1007/S10570-007-9166-4

    Article  CAS  Google Scholar 

  • Du RY, Huang RL, Su RX, Zhang MJ, Wang MF, Yang JF, Qi W, He ZM (2013) Enzymatic hydrolysis of lignocellulose: SEC-MALLS analysis and reaction mechanism. RSC Adv 3:1871–1877. doi:10.1039/C2ra21781c

    Article  CAS  Google Scholar 

  • Eckelt J, Knopf A, Roder T, Weber HK, Sixta H, Wolf BA (2011) Viscosity–molecular weight relationship for cellulose solutions in either NMMO monohydrate or Cuen. J Appl Polym Sci 119:670–676. doi:10.1002/App.32785

    Article  CAS  Google Scholar 

  • Emsley AM, Ali M, Heywood RJ (2000a) A size exclusion chromatography study of cellulose degradation. Polymer 41:8513–8521

    Article  CAS  Google Scholar 

  • Emsley AM, Xiao X, Heywood RJ, Ali M (2000b) Degradation of cellulosic insulation in power transformers. Part 3: effects of oxygen and water on ageing in oil. IEE Proc Sci Meas Technol 147:115–119. doi:10.1049/Ip-Smt:20000021

    Article  CAS  Google Scholar 

  • Evans R, Wallis AFA (1989) Cellulose molecular-weights determined by viscometry. J Appl Polym Sci 37:2331–2340. doi:10.1002/App.1989.070370822

    Google Scholar 

  • Ford JG, Palumbo AJ (1967) Treated cellulosic material and electrical apparatus embodying the same. 11 April, 1967. US Patent 3313879

  • Hill DJT, Le TT, Darveniza M, Saha T (1995) A study of degradation of cellulosic insulation materials in a power transformer. 1. Molecular-weight study of cellulose insulation paper. Polym Degrad Stab 48:79–87

    Article  CAS  Google Scholar 

  • Hjerde T, Kristiansen TS, Stokke BT, Smidsrød O, Christensen BE (1994) Conformation dependent depolymerisation kinetics of polysaccharides studied by viscosity measurements. Carbohydr Polym 24:265–275

    Article  CAS  Google Scholar 

  • Immergut EH, Ranby BG, Mark HF (1953) Recent work on molecular weight of cellulose. Ind Eng Chem 45:2483–2490

    Article  CAS  Google Scholar 

  • ISO5351 (2009) Determination of limiting viscosity number in cupriethylenediamine (CED) solution. ISO (International Organization for Standardization), Geneva, Switzerland

  • Kes M, Christensen BE (2013) A re-investigation of the Mark-Houwink-Sakurada parameters for cellulose in Cuen: a study based on size-exclusion chromatography combined with multi-angle light scattering and viscometry. J Chromatogr A 1281:32–37

    Article  CAS  Google Scholar 

  • Liland KB, Ese MHG, Selsbak CM, Lundgaard L (2011a) Ageing of oil impregnated thermally upgraded papers oxidation and hydrolysis. In: 2011 IEEE international conference on dielectric liquids (ICDL)

  • Liland KB, Kes M, Ese MHG, Lundgaard LE, Christensen BE (2011b) Study of oxidation and hydrolysis of oil impregnated paper insulation for transformers using a microcalorimeter. Dielectr Electr Insul IEEE Trans 18:2059–2068

    Article  CAS  Google Scholar 

  • Lojewski T, Zieba K, Lojewska J (2010) Size exclusion chromatography and viscometry in paper degradation studies. New Mark-Houwink coefficients for cellulose in cupri-ethylenediamine. J Chromatogr A 1217:6462–6468. doi:10.1016/J.Chroma.2010.07.071

    Article  CAS  Google Scholar 

  • Lundgaard LE, Hansen W, Linhjell D, Painter TJ (2004) Aging of oil-impregnated paper in power transformers. IEEE Trans Power Deliv 19:230–239. doi:10.1109/Tpwrd.2003.820175

    Article  CAS  Google Scholar 

  • McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium-chloride and N, N-dimethylacetamide. Macromolecules 18:2394–2401

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Sixta H, Kosma P (2002) Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett 43:7757–7759

    Article  CAS  Google Scholar 

  • Silva AA, Laver ML (1997) Molecular weight characterization of wood pulp cellulose: dissolution and size exclusion chromatographic analysis. Tappi J 80:173–180

    CAS  Google Scholar 

  • Sjöholm E, Gustafsson K, Norman E, Colmsjö A (1997) The effect of degradation on the strength of hardwood kraft pulp fibres. In: ISWPC—9th international symposium on wood and pulping chemistry: poster presentations, pp 1061–1064

  • Sjöholm E, Gustafsson K, Berthold F, Colmsjö A (2000) Influence of the carbohydrate composition on the molecular weight distribution of kraft pulps. Carbohydr Polym 41:1–7

    Article  Google Scholar 

  • Striegel AM, Timpa JD (1996) Size exclusion chromatography of polysaccharides in dimethylacetamide–lithium chloride. In: Potschka M, Dubin PL (eds) Strategies in size exclusion chromatography, vol ACS Symposium Series 635. American Chemical Society, Washington DC, pp 366–378

  • Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  • Timpa JD (1991) Application of universal calibration in gel-permeation chromatography for molecular-weight determinations of plant-cell wall polymers—cotton fiber. J Agric Food Chem 39:270–275

    Article  CAS  Google Scholar 

  • Westinghouse (1965) Insuldur insulation. Descriptive Bulletin, vol DB 45-451. Westinghouse Electric Corporation, USA

  • Yamamoto M, Kuramae R, Yanagisawa M, Ishii D, Isogai A (2011) Light-scattering analysis of native wood holocelluloses totally dissolved in LiCl-DMI solutions: high probability of branched structures in inherent cellulose. Biomacromolecules 12:3982–3988. doi:10.1021/Bm201211z

    Article  CAS  Google Scholar 

  • Yanagisawa M, Isogai A (2005) SEC-MALS-QELS study on the molecular conformation of cellulose in LiCl/amide solutions. Biomacromolecules 6:1258–1265. doi:10.1021/bm049386m

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.B. Liland, M.-H. G. Ese and L. Lundgaard (SINTEF Energy AS) are thanked for providing the aged samples. Cecilie M. Selsbak is acknowledged for performing viscometric measurements. We cordially thank Prof. A. Potthast, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria for valuable discussions and advice regarding SEC–MALLS of cellulosics. The work was supported by the Norwegian Research Council (Grant 173142/30), Hafslund Nett, Statnett SF, Statkraft Energi AS, Norsk Hydro, EDF, Nynäs AB, and ABB through the SINTEF Energy project “Thermal and electromagnetic performance of transformers”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn E. Christensen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 822 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kes, M., Christensen, B.E. Degradation of cellulosic insulation in power transformers: a SEC–MALLS study of artificially aged transformer papers. Cellulose 20, 2003–2011 (2013). https://doi.org/10.1007/s10570-013-9963-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9963-x

Keywords

Navigation