, Volume 20, Issue 3, pp 1057–1071 | Cite as

Conformational and optical properties of macromolecules of some aliphatic-substituted cellulose esters

  • N. V. Tsvetkov
  • S. V. Bushin
  • M. A. Bezrukova
  • E. P. Astapenko
  • N. G. Mikusheva
  • E. V. Lebedeva
  • A. N. Podseval’nikova
  • A. K. Khripunov
Original Paper


Synthesized cellulose pelargonates, tridecanoates, valerates, and acetovalerates of various molecular weights are studied in chloroform, dioxane, and tetrachloroethane solutions by the methods of isothermal translational diffusion, sedimentation velocity method, flow birefringence (dynamooptical Maxwell effect), viscometry, and equilibrium electric birefringence (Kerr effect). The equilibrium polymer rigidities are determined and the role of the solvent and temperature in the formation of the conformational characteristics of the macromolecules under study is analyzed. The values of the intrinsic optical anisotropy of the monomeric units of the studied cellulose esters are experimentally determined. The contribution of the side chains to the optical anisotropy of the macromolecules of cellulose esters with aliphatic substituents is analyzed. The results obtained in this study are compared with the data on the cellulose esters with the aliphatic side substituents studied earlier. For the studied samples, the values of the longitudinal components of the monomeric unit dipoles in a nonpolar solvent are estimated.


Macromolecule conformation Aliphatic groups Cellulose Maxwell effect Kerr effect 


  1. Arslanov VV (1994) Polymer monolayers and Langmuir-Blodgett films. The influence of the chemical structure of the polymer and of external conditions on the formation and properties of organized planar assemblies. Russ Chem Rev 63:1–39. doi: 10.1070/RC1994v063n01ABEH000069 CrossRefGoogle Scholar
  2. Benoit H. (1948) Calcul de l′écart quadratique moyen entre les extrémites die diverses chafnes molêculaires de type usual. J Pol Sci 3:376–388. doi: 10.1002/pol.1948.120030312
  3. Borgan RT and Brewer RJ (1985) Cellulose esters, organic. In: Kroschwitz JI (ed) Encyclopedia Polymer Science and Technology, 2nd edn. Wiley, New York. 3:158–181Google Scholar
  4. Bourne EJ, Stacey M, Tatlow JC, Tedder JM (1949) Studies on trifluoroacetic acid. Part I. Trifluoroacetic anhydride as a promoter of ester formation between hydroxy-compounds and carboxylic acids. J Chem Soc 2976–2979. doi:  10.1039/JR9490002976
  5. Bushin SV, Tsvetkov VN, Lysenko YeB, Yemel’yanov VN (1981) The sedimentation-diffusion and viscometric analysis of the conformation properties and molecular rigidity of ladder-like polyphenyl siloxane in solution. Polym Sci USSR 23:2705–2715. doi: 10.1016/0032-3950(81)90043-5 CrossRefGoogle Scholar
  6. Bushin SV, Khripunov AK, Astapenko EP, Bezrukova MA (2009) Hydrodynamic and conformational properties of cellulose valerate molecules in dilute solution. Polym Sci A 51:761–769. doi: 10.1134/S0965545X09070025 CrossRefGoogle Scholar
  7. Cheng HN, Dowd MK, Shogren RL, Biswas A (2011) Conversion of cotton byproducts to mixed cellulose esters. Carbohydr Polym 86:1130–1136. doi: 10.1016/j.carbpol.2011.06.002 CrossRefGoogle Scholar
  8. Edgar KJ, Buchanam CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. doi: 10.1016/S0079-6700(01)00027-2 CrossRefGoogle Scholar
  9. Flory PJ (1969) Statistical Mechanics of Chain Molecules. John Wiley & Sons, New YorkGoogle Scholar
  10. Garsia de la Torre J, Dias Banos FG, Peres Sanchez HE (2010) Kerr constant of multi-subunit particles and semiflexible, wormlike chains. J Phys: Condens Matter 22:494104. doi: 10.1088/0953-8984/22/49/494104 CrossRefGoogle Scholar
  11. Hamalainen C, Wade RH, Buras EM (1957) Fibrous cellulose esters by Trifluoroacetic anhydride method. Text Res J 27:168. doi: 10.1177/004051755702700211 CrossRefGoogle Scholar
  12. Jandura P, Kokta BV, Riedl B (2001) Cellulose fibers/polyethylene hybrid composites: effect of long chain organic acid cellulose esters and organic peroxide on rheology and tensile properties. J Reinf Plast Compos 20(8):697–717. doi: 10.1177/073168401772679048 CrossRefGoogle Scholar
  13. Jbankov RG, Kozlov PV (1983) Physics of cellulose and its derivatives. Nauka I tehnika, MinskGoogle Scholar
  14. Kawaguchi T, Nakahara H, Fukuda K (1985) Monomolecular and multimolecular films of cellulose esters with various alkyl chains. Thin Solid Films 133:29–38. doi: 10.1016/0040-6090(85)90422-5 CrossRefGoogle Scholar
  15. Khripunov AK, Kozmina OP, Shtennikova IN, Ohrimenco GI (1970) Cellulose esters and aliphatic-aromatic acids. Rus J Appl Chem 43:2581–2583 (in rus.)Google Scholar
  16. Khripunov AK, Baklagina YuG, Denisov VM, Volkov AYa, Lavrent’ev VK, Stepina ND, Yanusova LG, Feigin LA (2000) Model of packing of cellulose acetomyristinate in Langmuir-Blodgett films. Crystallogr Rep 45:318–322. doi: 10.1134/1.171189 CrossRefGoogle Scholar
  17. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive Cellulose Chemistry. Wiley-VCG Verlag, GermanyCrossRefGoogle Scholar
  18. Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256. doi: 10.1007/s12010-007-8119-6 CrossRefGoogle Scholar
  19. Kosaka PM, Kawano Y, Petri DFS (2007) Dewetting and surface properties of ultrathin films of cellulose esters. J Colloid Interface Sci 316:671–677. doi: 10.1016/j.jcis.2007.07.058 CrossRefGoogle Scholar
  20. Kuhn H (1947) Restricted bond rotation and shape of unbranched saturated hydrocarbon chain molecules. J Chem Phys 15:843–844. doi: 10.1063/1.1746348 CrossRefGoogle Scholar
  21. Kuznetsov YuP, Khripunov AK, Kruchinina EV, Kuznetsov VM, Turkova LD, Pen’kova AV (2004) Transport properties of cellulose ester membranes for separating gas and liquid mixtures. Rus J Appl Chem 77:1877–1882. doi: 10.1007/s11167-005-0180-8 CrossRefGoogle Scholar
  22. Lezov AV, Tsvetkov NV (1990) Methods of investigation measurement of Kerr effect by means of sinusoidal impulses as a tool for studying the dynamics of macromolecules in conductive solutions. Polym Sci USSR 32:162–165. doi: 10.1016/0032-3950(90)90064-D CrossRefGoogle Scholar
  23. Norisuye T, Motowoka M, Fujita H (1979) Wormlike chains near the rod limit: translational friction coefficient. Macromol 12:320–323. doi: 10.1021/ma60068a032 CrossRefGoogle Scholar
  24. Ratanakamnuan U, Atong D, Aht-Ong D (2012) Cellulose esters from waste cotton fabric via conventional and microwave heating. Carbohydr Polym 87:84–94. doi: 10.1016/j.carbpol.2011.07.016 CrossRefGoogle Scholar
  25. Shaub M, Fakirov C, Schmidt A, Lieser G, Wenz G, Werner G, Albouy PA, Wu H, Foster MD, Majrkzak C, Satija S (1995) Ultrathin layers and supramolecular architecture of isopentylcellulose. Macromol 28:1221–1228. doi: 10.1021/ma00108a059 CrossRefGoogle Scholar
  26. Sidorovich AV, Baklagina YuG, Khripunov AK, Bursian AE, Denisov VM, Lavrent’ev VK, Praslova OE, Kuznetsov YuP, Kruchinina EV, Shtykova EV, Sukhanova TE (2002) Structure and transport properties of films of mixed cellulose esters. Rus J Appl Chem 75:1700–1704. doi: 10.1023/A:1022204507634 CrossRefGoogle Scholar
  27. Steinmeier H (2004) Chemistry of cellulose acetylation. Macromol Symp 208:49–60. doi: 10.1002/masy.200450405 CrossRefGoogle Scholar
  28. Stepina ND, Klechkovskaya VV, Yanusova LG, Feigin LA, Tolstikhina AL, Sklizkova VP, Khripunov AK, Baklagina YuG, Kudryavtsev VV (2005) Formation of Langmuir-Blodgett films in solutions of comblike polymers. Crystallogr Rep 50:614–624. doi: 10.1134/1.1996736 CrossRefGoogle Scholar
  29. Taylor WJ (1947) Average square length and radius of unbranched long-chain molecules with restricted internal rotation. J Chem Phys 15:412–414. doi: 10.1063/1.1746540 CrossRefGoogle Scholar
  30. Tredgold RH (1987) The physics of Langmuir-Blodgett films. Rep Prog Phys 50:1609–1656. doi: 10.1088/0034-4885/50/12/002 CrossRefGoogle Scholar
  31. Tsvetkov VN (1989) Rigid-Chain Polymers. Consult Bur Plenum NY, LondonGoogle Scholar
  32. Tsvetkov NV (1990) Kerr Effect in polar solvents. Vestnik LGU 4:22–30 (in rus)Google Scholar
  33. Tsvetkov VN, Andreeva LN (1981) Flow and electric birefringence in rigid-chain polymer solutions. Adv Polym Sci 39:95–207. doi: 10.1007/3-540-10218-3_3 CrossRefGoogle Scholar
  34. Tsvetkov VN, Klenin SI (1953) Diffusion of polystyrene fractions in dichloroethane. Doclady Akad Nauk SSSR 88(1):49–52 (in rus)Google Scholar
  35. Tsvetkov VN, Tsvekov NV (1993) Electrical birefringence in solutions of rigid-chain polymers. Russ Chem Rev 62:851–876. doi: 10.1070/RC1993v062n09ABEH000050 CrossRefGoogle Scholar
  36. Tsvetkov VN, Eskin VE, Frenkel SYa (1979) Structure of macromolecules in solutions. Natl Lend Libr Sci Technol, Boston SpaGoogle Scholar
  37. Tsvetkov VN, Lavrenko PN, Bushin SV (1982) A hydrodynamic invariant of polymeric molecules. Russ Chem Rev 51(10):975–993. doi: 10.1070/RC1982v051n10ABEH002935 CrossRefGoogle Scholar
  38. Tsvetkov VN, Kolomiets IP, Lezov AV, Stepchenkov AS (1983) Use of modulation of elliptic light polarization for the study of electric birefringence of polymer solutions in pulse fields. Polym Sci USSR 25:1541–1546. doi: 10.1016/0032-3950(83)90095-3 CrossRefGoogle Scholar
  39. Tsvetkov VN, Lezov AV, Tsvetkov NV, Andreeva LN (1990) Kerr effect in solutions of cellulose carbanilate in polar solvents. Eur Polym J 26:1103–1107. doi: 10.1016/0014-3057(90)90010-2 CrossRefGoogle Scholar
  40. Tsvetkov VN, Bushin CV, Bezrukova MA, Astapenko EP, Didenko SA, Khripunov AK, Denisov VM (1993) Hydrodynamic, dynamooptical, and conformational characteristics of molecules of cellulose acetocinnamate. Vysokomoleculyarnye Soedineniya. A 35(10):1632–1640 (in rus.)Google Scholar
  41. Tsvetkov VN, Khripunov AK, Astapenko EP, Didenko SA (1995) Optical and electrooptical properties of cellulose esters with aliphatic side groups. Polym Sci A 37:791–798Google Scholar
  42. Tsvetkov VN, Andreeva LN, Tsvetkov NV (1999) Anisotropy of segments and monomer units of polymer molecules. In: Brandrup J, Immergut EH, Grulke E (eds) Polymer handbook, 4th edn. Wiley J & Sons, New York, pp 745–763Google Scholar
  43. Virtanen T, Virtanen T, Svedström K, Andersson S, Knaapila M, Kotelnikova N, Maunu SL, Serimaa R (2012) A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing. Cellul 19:219–235. doi: 10.1007/s10570-011-9636-6 CrossRefGoogle Scholar
  44. Wang P, Tao BY (1995) Synthesis of cellulose-fatty acid esters for use as biodegradable plastics. J Environ Polym Degrad 3:115–119. doi: 10.1007/BF02067487 CrossRefGoogle Scholar
  45. Yamakawa H, Fujii M (1973) Translational friction coefficient of wormlike chains. Macromol 6:407–415. doi: 10.1021/ma60033a018 CrossRefGoogle Scholar
  46. Yamakawa H, Yoshizaki T (1980) Transport coefficients of helical wormlike chains. 3. Intrinsic viscosity. Macromology 13(3):633–643. doi: 10.1021/ma60075a02 CrossRefGoogle Scholar
  47. Yang JS, Kim HJ, Jo WH, Kang YS (1998) Analysis of pervaporation of methanol-MTBE mixtures through cellulose acetate and cellulose triacetate membranes. Polym 39:1381–1385. doi: 10.1016/S0032-3861(97)00416-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • N. V. Tsvetkov
    • 1
  • S. V. Bushin
    • 2
  • M. A. Bezrukova
    • 2
  • E. P. Astapenko
    • 2
  • N. G. Mikusheva
    • 1
  • E. V. Lebedeva
    • 1
  • A. N. Podseval’nikova
    • 1
  • A. K. Khripunov
    • 2
  1. 1.Department of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations