, Volume 20, Issue 3, pp 1145–1151 | Cite as

Superelastic percolation network of polyacrylamide (PAAm)–kappa carrageenan (κC) composite

  • G. Akin Evingür
  • Ö. Pekcan
Original Paper


The elasticity of the polyacrylamide (PAAm)-kappa carrageenan (κC) composite was determined as a function of (w/v-%) κC content at 40 °C. The gel composites studied contained various percentages (w/v-%) of κC. The elasticity of the swollen PAAm-κC composite was characterized by using the tensile testing technique. This study investigated the elasticity and the percolation threshold of PAAm-κC composite as a function of κC content. It is understood that the compressive elastic modulus decreases up to 1 (w/v-%) of κC and then increases at contents above 1(w/v-%) of κC. The critical exponent of elasticity y was determined between 1 and 1.6 (w/v-%) of κC and found to be 0.68. The observed elastic percolation threshold is consistent with the suggested values of the superelastic percolation network.


Universality Elasticity Acrylamide Kappa carrageenan (κC) Superelastic percolation network 



We thank Dr. Argun Talat Gökçeören for the mechanical measurements.


  1. Aktaş DK, Evingür GA, Pekcan Ö (2006) Universal behaviour of gel formation from acrylamide-carrageenan mixture around the gel point: a fluorescence study. J Biomol Struct Dyn 24(1):83–90CrossRefGoogle Scholar
  2. Anseth KS, Bowman CN, Peppas LB (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657CrossRefGoogle Scholar
  3. Arbabi S, Sahimi M (1993) Mechanics of disordered solids. I. percolation on elastic networks with central forces. Phys Rev B 47(2):695–702CrossRefGoogle Scholar
  4. Berkowitz B, Balberg I (1993) Percolation theory and its application to groundwater hydrology. Water Res 29(4):775–794CrossRefGoogle Scholar
  5. Çakır E, Foegeding EA (2011) Combining protein micro protein micro phase separation and protein-polysaccharide segregative phase separation to produce gel structures. Food Hydrocoll 25:1538–1546CrossRefGoogle Scholar
  6. Colby RH, Gillmor JR, Rubinstein M (1993) Dynamics of near critical polymer gels. Phys Rev E 48(5):3712–3716CrossRefGoogle Scholar
  7. de Gennes PG (1976) On the relation between percolation theory and the elasticity of gels. Le J de Phys Lett 37:L1–L2CrossRefGoogle Scholar
  8. Erman B, Flory PJ (1986) Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromol 19:2342–2353CrossRefGoogle Scholar
  9. Evingür GA, Pekcan Ö (2011) Drying of polyacrylamide composite gels formed with various kappa carrageenan content. J Fluo 21:1531–1537CrossRefGoogle Scholar
  10. Evingür GA, Pekcan Ö (2012a) Elastic percolation of swollen polyacrylamide (PAAm)-multiwall carbon nanotubes (MWNTs) composite. Ph Transitions 85:553–564CrossRefGoogle Scholar
  11. Evingür GA, Pekcan Ö (2012b) Temperature effect on the swelling of PAAm–kcarrageenan composites. J Appl Polym Sci 123:1746–1754CrossRefGoogle Scholar
  12. Feng S, Sen PN (1984) Percolation on elastic networks: new exponent and threshold. Phys Rev Lett 52(3):216–219CrossRefGoogle Scholar
  13. Friedrich K, Fakirov S, Zhang Z (2005) Polymer composites from nano to macro scale. Springer, USAGoogle Scholar
  14. Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52(21):1891–1894CrossRefGoogle Scholar
  15. Loret C, Ribelles P, Lundin L (2009) Mechanical properties of k-carrageenan in high concentration of sugar solutions. Food Hydrocoll 23:823–832CrossRefGoogle Scholar
  16. Muniz EC, Geuskens G (2001) Compressive elastic modulus of polyacrylamide hydrogels and semi-IPN’s with poly (N-isoproplacrylamide). Macromolecules 34:4480–4484Google Scholar
  17. Nielsen LE, Lawrence RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New YorkGoogle Scholar
  18. Rubinstein RH, Colby H (1994) Elastic modulus and equilibrium swelling of near critical gels. Macromolecules 27:3184–3190CrossRefGoogle Scholar
  19. Sahimi M (1994) Application of percolation theory. Taylor and Francis, LondonGoogle Scholar
  20. Schriemer HP, Pachet NG, Page JH (1996) Ultrasonic investigation of the vibrational modes of a sintered glass-bead percolation system. Waves Random Media 6:361–386CrossRefGoogle Scholar
  21. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012a) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohydr Polym 87(3):2038–2045CrossRefGoogle Scholar
  22. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012b) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19(4):1225–1237CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Piri Reis UniversityTuzla, IstanbulTurkey
  2. 2.Kadir Has UniversityCibali, IstanbulTurkey

Personalised recommendations