Advertisement

Cellulose

, Volume 20, Issue 3, pp 1501–1509 | Cite as

Mechanical reinforcement and water repellency induced to cellulose sheets by a polymer treatment

  • Farouk Ayadi
  • Ilker S. Bayer
  • Despina Fragouli
  • Ioannis Liakos
  • Roberto Cingolani
  • Athanassia AthanassiouEmail author
Original Paper

Abstract

The present study reports a simple method to control the mechanical and surface properties of cellulose fiber networks and to protect them from humidity, without altering their initial morphology. This is achieved by dip coating the fiber networks in solutions containing different amounts of ethyl cyanoacrylate monomer (ECA). Under ambient humidity and due to the presence of the -OH groups of the cellulose, the ECA polymerizes around each individual cellulosic fiber forming a thin poly(ethyl cyanoacrylate) (PECA) shell. PECA was found to interact with the cellulose surface via hydrogen bonding as evidenced by Fourier transform infrared spectroscopy and thermogravimetric analysis measurements. The detailed surface characterization reveals that only 3.5 wt% of ECA in solution is sufficient to form compact PECA cladding around every cellulose fiber. After the proposed treatment the cellulose sheets become hydrophobic, well protected from the environmental humidity and with increased Young’s modulus.

Keywords

Cyanoacrylate Cellulose fibers Hydrophobic cellulose Relative humidity 

Supplementary material

10570_2013_9900_MOESM1_ESM.doc (88 kb)
Supplementary material 1 (DOC 87 kb)

References

  1. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Gandini A (2005) Modification of cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci 98(3):974–984CrossRefGoogle Scholar
  2. Arias JL, Gallardo V, Gómez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Control Release 77(3):309–321CrossRefGoogle Scholar
  3. Barud HS, Caiut JMA, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2012) Transparent bacterial cellulose–boehmite–epoxi-siloxane nanocomposites. Compos Part A Appl Sci Manuf 43(6):973–977CrossRefGoogle Scholar
  4. Bayer IS, Fragouli D, Attanasio A, Sorce B, Bertoni G, Brescia R, Di Corato R, Pellegrino T, Kalyva M, Sabella S, Pompa PP, Cingolani R, Athanassiou A (2011) Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Interfaces 3(10):4024–4031CrossRefGoogle Scholar
  5. Bongiovanni R, Zeno E, Pollicino A, Serafini P, Tonelli C (2011) UV light-induced grafting of fluorinated monomer onto cellulose sheets. Cellulose 18(1):117–126CrossRefGoogle Scholar
  6. Cao Y, Tan H (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705(1–3):189–193CrossRefGoogle Scholar
  7. Chen ZG, Mo XM, He CL, Wang HS (2008) Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbohydr Polym 72(3):410–418CrossRefGoogle Scholar
  8. Deslandes Y, Pleizier G, Poiré E, Sapieha S, Wertheimer MR, Sacher E (1998) The surface modification of pure cellulose paper induced by low-pressure nitrogen plasma treatment. Plasmas Polym 3(2):61–76CrossRefGoogle Scholar
  9. Fragouli D, Bayer IS, Di Corato R, Brescia R, Bertoni G, Innocenti C, Gatteschi D, Pellegrino T, Cingolani R, Athanassiou A (2012) Superparamagnetic cellulose fiber networks via nanocomposite functionalization. J Mater Chem 22(4):1662–1666CrossRefGoogle Scholar
  10. Han MG, Kim S, Liu SX (2008) Synthesis and degradation behavior of poly(ethyl cyanoacrylate). Polym Degrad Stab 93(7):1243–1251CrossRefGoogle Scholar
  11. Kamińska A, Sionkowska A (1996) Effect of UV radiation on the infrared spectra of collagen. Polym Degrad Stab 51(1):19–26CrossRefGoogle Scholar
  12. Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39(12):4202–4206CrossRefGoogle Scholar
  13. Klemarczyk P (2001) The isolation of a zwitterionic initiating species for ethyl cyanoacrylate (ECA) polymerization and the identification of the reaction products between 1° 2° and 3° amines with ECA. Polymer 42(7):2837–2848CrossRefGoogle Scholar
  14. Levy I, Nussinovitch A, Shpigel E, Shoseyov O (2002) Recombinant cellulose crosslinking protein: a novel paper-modification biomaterial. Cellulose 9(1):91–98CrossRefGoogle Scholar
  15. Li X, Tian J, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17(3):649–659CrossRefGoogle Scholar
  16. Li H, Fu S, Peng L, Zhan H (2012) Surface modification of cellulose fibers with layer-by-layer self-assembly of lignosulfonate and polyelectrolyte: effects on fibers wetting properties and paper strength. Cellulose 19(2):533–546CrossRefGoogle Scholar
  17. Liang H-W, Guan Q-F, Zhu Z, Song L-T, Yao H-B, Lei X, Yu S-H (2012) Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater 4:e19CrossRefGoogle Scholar
  18. Marechal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRefGoogle Scholar
  19. Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites—a review. J Thermoplast Compos Mater 22(2):135–162CrossRefGoogle Scholar
  20. Navarro F, Dávalos F, González-Cruz R, López-Dellamary F, Manríquez R, Turrado J, Ramos J (2009) Sisal chemo-thermomechanical pulp paper with a strongly hydrophobic surface coating produced by a pentafluorophenyldimethylsilane cold plasma. J Appl Polym Sci 112(1):479–488CrossRefGoogle Scholar
  21. Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417–428CrossRefGoogle Scholar
  22. Oowaki H, Matsuda S, Sakai N, Ohta T, Iwata H, Sadato A, Taki W, Hashimoto N, Yoshito I (2000) Non-adhesive cyanoacrylate as an embolic material for endovascular neurosurgery. Biomaterials 21(10):1039–1046CrossRefGoogle Scholar
  23. Piantanida G, Pinzari F, Montanari M, Bicchieri M, Coluzza C (2006) Atomic force microscopy applied to the study of Whatman paper surface deteriorated by a cellulolytic filamentous fungus. Macromol Symp 238(1):92–97CrossRefGoogle Scholar
  24. Reece TB, Maxey TS, Kron IL (2001) A prospectus on tissue adhesives. Am J Surg 182(2, Supplement 1):S40–S44CrossRefGoogle Scholar
  25. Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16(6):975–982CrossRefGoogle Scholar
  26. Samyn P, Schoukens G, Vonck L, Stanssens D, Van Den Abbeele Henk (2011) How thermal curing of an organic paper coating changes topography, chemistry, and wettability. Langmuir 27(13):8509–8521Google Scholar
  27. Shen W, Parker IH (2001) A preliminary study of the spreading of AKD in the presence of capillary structures. J Colloid Interface Sci 240(1):172–181CrossRefGoogle Scholar
  28. Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848CrossRefGoogle Scholar
  29. Tomlinson SK, Ghita OR, Hooper RM, Evans KE (2006) The use of near-infrared spectroscopy for the cure monitoring of an ethyl cyanoacrylate adhesive. Vib Spectrosc 40(1):133–141CrossRefGoogle Scholar
  30. Trombetta T, Iengo P, Turri S (2005) Fluorinated segmented polyurethane anionomers for water–oil repellent surface treatments of cellulosic substrates. J Appl Polym Sci 98(3):1364–1372CrossRefGoogle Scholar
  31. Vaswani S, Koskinen J, Hess DW (2005) Surface modification of paper and cellulose by plasma-assisted deposition of fluorocarbon films. Surf Coat Technol 195(2–3):121–129CrossRefGoogle Scholar
  32. Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55(4):519–548CrossRefGoogle Scholar
  33. Wang L, Han G, Zhang Y (2007) Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr Polym 69(2):391–397CrossRefGoogle Scholar
  34. Ye L, Filipe CDM, Kavoosi M, Haynes CA, Pelton R, Brook MA (2009) Immobilization of TiO2 nanoparticles onto paper modification through bioconjugation. J Mater Chem 19(15):2189–2198CrossRefGoogle Scholar
  35. Zhai Y, Deng L, Lin X, Xiao L, Jin F, Dong A (2009) Methoxy poly(ethylene glycol)-b-poly(ethyl cyanoacrylate) copolymer nanoparticles as delivery vehicles for dexamethasone. Chin Sci Bull 54(17):2918–2924CrossRefGoogle Scholar
  36. Zhang H, Kannangara D, Hilder M, Ettl R, Shen W (2007) The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides. Colloids Surf A Physicochem Eng Asp 297(1–3):203–210CrossRefGoogle Scholar
  37. Zhang L, Zhao N, Li X, Long Y, Zhang X, Xu J (2011) A facile approach to superhydrophobic coating from direct polymerization of “super glue”. Soft Matter 7(8):4050–4054CrossRefGoogle Scholar
  38. Zhenwen D, Pinghung W, Girish C, Babak Z (2011) Ferrofluid-impregnated paper actuators. J Microelectromech Syst 20(1):59–64CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Farouk Ayadi
    • 1
  • Ilker S. Bayer
    • 2
  • Despina Fragouli
    • 2
  • Ioannis Liakos
    • 1
  • Roberto Cingolani
    • 3
  • Athanassia Athanassiou
    • 2
    Email author
  1. 1.Center for Biomolecular Nanotechnologies @UnileIstituto Italiano di Tecnologia (IIT)LecceItaly
  2. 2.NanophysicsIstituto Italiano di TecnologiaGenoaItaly
  3. 3.Istituto Italiano di TecnologiaGenoaItaly

Personalised recommendations