, Volume 20, Issue 2, pp 785–794 | Cite as

Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis

  • Tiffany Abitbol
  • Elisabeth Kloser
  • Derek G. Gray
Original Paper


The conditions required for the accurate measurement of the sulfur content of cellulose nanocrystals (CNCs) by conductometric titration are discussed. CNCs from sulfuric acid hydrolysis are electrostatically stabilized in aqueous suspension due to the introduction of charged sulfate ester groups onto the surface of the crystallites during reaction. The sulfur content thus largely reflects the surface charge of the crystals, and is crucial to the characterization and understanding of material properties. Conductometric titration is commonly used to quantify the sulfur content of CNCs, however, the exhaustive removal of free acid by dialysis and the necessity, type, quantity and duration of ion-exchange resin treatments are not always consistent. Here we explore the standard conditions of dialysis, ion-exchange, and the reproducibility of titration results. Extensive dialysis is found to be effective in the removal of free acid, but similar results are also achieved in shorter times and with less water using membrane ultrafiltration. It is also shown that the conditions of ion-exchange most commonly employed in the literature can lead to inaccurate sulfur contents. Finally, good agreement is obtained between the sulfur contents of different CNC batches prepared using the same hydrolysis conditions, and from titration and elemental analysis when thoroughly purified, well-dispersed samples, and appropriate resin conditions are used.


Cellulose nanocrystals Electrostatic stabilization Sulfate half-esters Sulfur content Surface charge Conductometric titration Dialysis Membrane ultrafiltration Ion exchange resin 



We thank Drs. X.D. Liu, L. Mongeon and M. Bostina of the Facility for Electron Microscopy (FEMR) McGill for TEM imaging and insight, M. Ramkaran for AFM expertise, and Drs. S. Beck, E. Gonzalez-Labrada and J.M. Berry for helpful discussion. The support of NSERC and FPInnovations is gratefully acknowledged.


  1. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142(1):75–82CrossRefGoogle Scholar
  2. Araki J, Wada M, Kuga S (2000) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27CrossRefGoogle Scholar
  3. Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12(1):167–172CrossRefGoogle Scholar
  4. Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13(5):1486–1494CrossRefGoogle Scholar
  5. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054CrossRefGoogle Scholar
  6. Dong XM, Gray DG (1997) Effect of counterions in ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409CrossRefGoogle Scholar
  7. Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRefGoogle Scholar
  8. Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10(4):299–306CrossRefGoogle Scholar
  9. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRefGoogle Scholar
  10. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  11. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRefGoogle Scholar
  12. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-aseembly and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  13. Holt BL, Stoyanov SD, Pelan E, Paunov VN (2010) Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives. J Mater Chem 20(45):10058–10070CrossRefGoogle Scholar
  14. Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H(2)SO(4)-hydrolyzed cellulose nanocrystals. Langmuir 26(23):17919–17925CrossRefGoogle Scholar
  15. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angewandte Chemie Int Ed 50(24):5438–5466CrossRefGoogle Scholar
  16. Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(16):13450–13456CrossRefGoogle Scholar
  17. Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3):302–305CrossRefGoogle Scholar
  18. Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8):2997–3006CrossRefGoogle Scholar
  19. Majoinen J, Kontturi E, Ikkala O, Gray D (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19(5):1599–1605CrossRefGoogle Scholar
  20. Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3(5):649–650CrossRefGoogle Scholar
  21. Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRefGoogle Scholar
  22. Revol JF, Godbout L, Dong XM, Gray DG (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134CrossRefGoogle Scholar
  23. Roman M, Gray DG (2005) Parabolic focal conics in self-assembled solid films of cellulose nanocrystals. Langmuir 21(12):5555–5561CrossRefGoogle Scholar
  24. Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites—influence of whisker aspect ratio and surface charge. Biomacromolecules 12(4):1363–1369CrossRefGoogle Scholar
  25. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491CrossRefGoogle Scholar
  26. Salajkovà M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805CrossRefGoogle Scholar
  27. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRefGoogle Scholar
  28. Sebe G, Ham-Pichavant F, Ibarboure E, Koffi ALC, Tingaut P (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13(2):570–578CrossRefGoogle Scholar
  29. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  30. Urena-Benavides EE, Ao GY, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tiffany Abitbol
    • 1
  • Elisabeth Kloser
    • 1
  • Derek G. Gray
    • 1
  1. 1.Department of ChemistryMcGill UniversityMontrealCanada

Personalised recommendations