, Volume 21, Issue 1, pp 485–494 | Cite as

High performance poly (vinyl alcohol)/cellulose nanocrystals nanocomposites manufactured by injection molding

  • Wei Zhang
  • Xu He
  • Cuiying Li
  • Xinxing Zhang
  • Canhui Lu
  • Xiaodan Zhang
  • Yulin Deng
Original Paper


Polyvinyl alcohol (PVA)/cellulose nanocrystals (CNCs) compounds were successfully melt-processed by injection molding. During the processing, water was involved in the system as both the dispersion medium for CNCs and the plasticizer for PVA. Meanwhile, formamide was added to prevent the evaporation of water and to co-plasticize PVA. Thermal gravimetric analysis and differential scanning calorimetry indicated the melt processing window of PVA was expanded by 40 °C. Tensile tests showed that the mechanical properties of injection-molded samples were significantly improved with the addition of CNCs. The tensile strength of the composites increased from 32 to 58 MPa, and modulus increased from 175 to 1,252 MPa when 7 wt% CNCs was added. Moreover, the volume shrinkage of PVA nanocomposites upon drying as well as their water leaching rate could be remarkably reduced in the presence of CNCs.


Cellulose nanocrystals Poly (vinyl alcohol) Injection molding Mechanical properties Thermal properties 



The authors would like to thank Natural Science Foundation of China (50833003 and 51303112) and Young Scholar Fund of Sichuan University (2012SCU11074) for financial support of this work.


  1. Azouz KB, Ramires EC, Van den Fonteyne W, Kissi NE, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240CrossRefGoogle Scholar
  2. Beck S, Bouchard J, Berry R (2011) Redispersible dried nanocrystalline cellulose. US Patent: 20110290149A1Google Scholar
  3. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRefGoogle Scholar
  4. Chen N, Li L, Wang Q (2007) New technology for thermal processing of poly(vinyl alcohol). Plast, Rubber Compos 36:283–290CrossRefGoogle Scholar
  5. Chen Y, Cao XD, Chang PR, Huneault M (2008) A comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17CrossRefGoogle Scholar
  6. Chen G, Dufresne A, Huang J, Chang PR (2009) A novel thermoformable bionanocomposite based on cellulose nanocrystal-graft-poly (e-caprolactone). Macromol Mater Eng 294:59–67CrossRefGoogle Scholar
  7. Coker JN (1976) Melt extrudable polyvinyl alcohol compositions. United States Patent 3997489Google Scholar
  8. Corti A, Cinelli P, D’Antone S, Kenawy E, Solaro R (2002) Biodegradation of poly(vinyl alcohol) in soil environment: influence of natural organic fillers and structural parameters. Macromol Chem Phys 203:1526–1531CrossRefGoogle Scholar
  9. de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRefGoogle Scholar
  10. de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480CrossRefGoogle Scholar
  11. Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  12. French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. doi: 10.1007/s10570-013-0030-4
  13. French AD, Santiago Cintro’n M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588CrossRefGoogle Scholar
  14. Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRefGoogle Scholar
  15. Heritage KJ, Mann J, Roldan-Gonzalez L (1963) Crystallinity and the structure of celluloses. J Appl Polym Sci 1:671–685Google Scholar
  16. Hu X, Xu C, Gao J, Yang G, Geng C, Chen F, Fu Q (2013) Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals. Compos Sci Technol 78:63–68CrossRefGoogle Scholar
  17. Imam SH, Cinelli P, Gordon SH, Chiellini E (2005) Characterization of biodegradable composite films prepared from blends of poly (vinyl alcohol), cornstarch, and lignocellulosic fiber. J Polym Environ 1:47–55CrossRefGoogle Scholar
  18. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRefGoogle Scholar
  19. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRefGoogle Scholar
  20. John MJ, Anandjiwala R, Oksman K, Mathew AP (2013) Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties. J Appl Polym Sci. doi: 10.1002/APP.37884
  21. Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165CrossRefGoogle Scholar
  22. Lenz RW (1993) Biodegradable polymers. Adv Polm Sci 107:1–40CrossRefGoogle Scholar
  23. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:1–6CrossRefGoogle Scholar
  24. Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A 39:738–746CrossRefGoogle Scholar
  25. Mao LJ, Imam S, Gordon S, Cinelli P, Chiellini E (2000) Extruded cornstarch–glycerol–polyvinyl alcohol blends: mechanical properties, morphology, and biodegradability. J Polym Environ 8:205–211CrossRefGoogle Scholar
  26. Nishio Y, Haratani T, Takahashi T (1989) Cellulose/poly (vinyl alcohol) blends: an estimation of thermodynamic polymer–polymer interaction by melting-point-depression analysis. Macromolecules 22:2547–2549CrossRefGoogle Scholar
  27. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784CrossRefGoogle Scholar
  28. Paradossi G, Cavalierri F, Chiessi E, Spagnoli C, Cowman M (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med 14:687–691CrossRefGoogle Scholar
  29. Pšeja J, Charváatová H, Hruzík P, Hrncirík J, Kupec J (2006) Anaerobic biodegradation of blends based on Polyvinyl alcohol. J Polym Environ 14:185–190CrossRefGoogle Scholar
  30. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498CrossRefGoogle Scholar
  31. Sakellarioul P, Hassan A, Rowe RC (1994) Interactions and partitioning of diluents/plasticizers in hydroxypropyl methylcellulose and polyvinyl alcohol homopolymers and blends. Part II: glycerol. Colloid Polym Sci 272:48–56CrossRefGoogle Scholar
  32. Samir MASA, Alloin F, Sanchez J-Y, Kissi NE, Dufresne A (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393CrossRefGoogle Scholar
  33. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  34. Segal L, Creely JJ, Martin AE (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794CrossRefGoogle Scholar
  35. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  36. Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos A 40:791–799CrossRefGoogle Scholar
  37. TAPPI (2011) Workshop on international standards for nanocellulose, Arlington, USA, June 9, 2011Google Scholar
  38. van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8:1353–1357CrossRefGoogle Scholar
  39. Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113CrossRefGoogle Scholar
  40. Zhang W, Liang M, Lu CH (2007) Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling. Cellulose 14:447–456CrossRefGoogle Scholar
  41. Zhang W, Yang X, Li C, Liang M, Lu C, Deng Y (2011) Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohyd Polym 83:257–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials Engineering, Polymer Research InstituteSichuan UniversityChengduPeople’s Republic of China
  2. 2.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  3. 3.School of Chemical and Biomolecular Engineering and IPST at GTGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations