, Volume 21, Issue 1, pp 791–802 | Cite as

Enhanced thermal and combustion resistance of cotton linked to natural inorganic salt components

  • Sunghyun Nam
  • Brian D. Condon
  • Marcus B. Foston
  • SeChin Chang
Original Paper


A comparison of the thermal decomposition and combustion characteristics of raw and scoured cottons has demonstrated a mechanistic link caused by the presence of inorganic salts in raw cotton, which enhances resistance to heat and flame. Thermogravimetry, differential thermogravimetry, and microscale combustion calorimetry were used to examine the thermal decomposition kinetics and thermal stability of cotton. During pyrolysis, both raw cotton nonwoven and woven fabrics exhibited a slower decomposition with a larger initial weight loss and produced a greater char yield, as compared to the fabrics after scouring, which removes most inorganic components from cotton. The activation energy (E a ) values, calculated using the Kissinger method, the Flynn–Wall–Ozawa method, and the modified Coats–Redfern method, were consistently determined to be smaller for raw cotton than for scoured cotton. The analyses of cotton fabrics heated at elevated temperatures by 13C CP/MAS NMR and ATR-FTIR showed that trace quantities of inorganic components promoted the formations of oxygenated moieties at low temperatures and aliphatic intermediate char. In the combustion, raw cotton exhibited a much smaller heat release capacity and a smaller total heat release than scoured cotton, indicating enhanced thermal stability when the inorganic components are intact.


Cotton Inorganic salt Thermogravimetry Microscale combustion calorimetry NMR Activation energy 



We thank Dr. Robert H. White for his review and also thank Qingliang He and Dr. Qi Zhao for their valuable discussions. USDA is an equal opportunity provider and employer.


  1. Abidi N, Hequet E, Ethridge D (2007) Thermogravimetric analysis of cotton fibers: relationships with maturity and fineness. J Appl Polym Sci 103:3476–3482CrossRefGoogle Scholar
  2. Alongi J, Camino G, Malucelli G (2013) Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydr Polym 92(2):1327–1332CrossRefGoogle Scholar
  3. Antal MJ, Friedman HL, Rogers FE (1980) Kinetics of cellulose pyrolysis in nitrogen and steam. Combust Sci Technol 21(3–4):141–152CrossRefGoogle Scholar
  4. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefGoogle Scholar
  5. Atalla RH, Vanderhart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19CrossRefGoogle Scholar
  6. Basch A, Lewin M (1973) The influence of fine structure on the pyrolysis of cellulose. I. Vacuum pyrolysis. J Polym Sci 11(12):3071–3093Google Scholar
  7. Bradbury AGW, Sakai Y, Shafizadeh F (1979) Kinetic-model for pyrolysis of cellulose. J Appl Polym Sci 23(11):3271–3280CrossRefGoogle Scholar
  8. Cabrales L, Abidi N (2010) On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim 102(2):485–491CrossRefGoogle Scholar
  9. David K, Pu Y, Foston M, Muzzy J, Ragauskas A (2009) Cross-polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) analysis of chars from alkaline-treated pyrolyzed softwood. Energy Fuels 23(1):498–501CrossRefGoogle Scholar
  10. DeGroot WF, Shafizadeh F (1984) The influence of exchangeable cations on the carbonization of biomass. J Anal Appl Pyrolysis 6(3):217–232CrossRefGoogle Scholar
  11. Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5(15):285–292CrossRefGoogle Scholar
  12. Flynn JH, Wall LA (1966) General treatment of thermogravimetry of polymers. J Res Natl Bur Stand 70A(6):487–523CrossRefGoogle Scholar
  13. Halpern Y, Patai S (1969) Pyrolytic reactions of carbohydrates. Part V. Isothermal decomposition of cellulose in vacuo. Isr J Chem 7:673–683CrossRefGoogle Scholar
  14. Horrocks AR (2011) Flame retardant challenges for textiles and fibers: new chemistry versus innovatory solutions. Polym Degrad Stab 96(3):377–392CrossRefGoogle Scholar
  15. Hu S, Hu Y, Song L, Lu H (2011) Effect of modified organic–inorganic hybrid materials on thermal properties of cotton fabrics. J Therm Anal Calorim 103(2):423–427CrossRefGoogle Scholar
  16. Julien S, Chornet E, Tiwari PK, Overend RP (1991) Vacuum pyrolysis of cellulose: Fourier transform infrared characterization of solid residues, product distribution and correlations. J Anal Appl Pyrolysis 19:81–104CrossRefGoogle Scholar
  17. Kato K, Takahashi N (1967) Pyrolysis of cellulose part II. Thermogravimetric analyses and determination of carbonyl and carboxyl groups in pyrocellulose. Agric Biol Chem 31:519–524CrossRefGoogle Scholar
  18. Kelly J, Mackey M, Helleur RJ (1991) Quantitative analysis of saccharides in wood pulps by quartz-tube pulse pyrolysis—polar phase gas chromatography. J Anal Appl Pyrolysis 19:105–117CrossRefGoogle Scholar
  19. Kilzer FJ, Broido A (1965) Speculation on the nature of cellulose pyrolysis. Pyrodynamics 2:151–163Google Scholar
  20. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57(4):217–221CrossRefGoogle Scholar
  21. Lyon RE, Walters RN, Stoliarov SI (2007) Screening flame retardants for plastics using microscale combustion calorimetry. Polym Eng Sci 47(10):1501–1510CrossRefGoogle Scholar
  22. Mayer ZA, Apfelbacher A, Hornung A (2012) A comparative study on the pyrolysis of metal- and ash-enriched wood and the combustion properties of the gained char. J Anal Appl Pyrolysis 96:196–202CrossRefGoogle Scholar
  23. McCall ER, Jurgens JF (1951) Chemical composition of cotton. Text Res J 21:19–21CrossRefGoogle Scholar
  24. Nassar MM (1999) Thermal analysis kinetics of bagasse and rice straw. Energy Sources 21:131–137CrossRefGoogle Scholar
  25. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886CrossRefGoogle Scholar
  26. Piskorz J, Radlein D, Scott DS, Czernik S (1989) Pretreatment of wood and cellulose for production of sugars by fast pyrolysis. J Anal Appl Pyrolysis 16(2):127–142CrossRefGoogle Scholar
  27. Pouwels AD, Eijkel GB, Boon JJ (1989) Curie-point pyrolysis-capillary gas chromatography-high-resolution mass spectrometry of microcrystalline cellulose. J Anal Appl Pyrolysis 14:237–280CrossRefGoogle Scholar
  28. Radlein D, Piskorz J, Scott DS (1991) Fast pyrolysis of natural polysaccharides as a potential industrial process. J Anal Appl Pyrolysis 19:41–63CrossRefGoogle Scholar
  29. Richards GN (1987) Glycolaldehyde from pyrolysis of cellulose. J Anal Appl Pyrolysis 10(3):251–255CrossRefGoogle Scholar
  30. Richards GN, Zheng G (1991) Influence of metal ions and of salts on products from pyrolysis of wood: applications to thermochemcial processing of newsprint and biomass. J Anal Appl Pyrolysis 21(1–2):133–146CrossRefGoogle Scholar
  31. Shafizadeh F (1968) Pyrolysis and combustion of cellulosic materials. Adv Carbohydr Chem 23:419–474Google Scholar
  32. Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3(4):283–305CrossRefGoogle Scholar
  33. Shafizadeh F (1985) Pyrolytic reactions and products of biomass. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier, Amsterdam, pp 183–217CrossRefGoogle Scholar
  34. Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23:1431–1442CrossRefGoogle Scholar
  35. Shafizadeh F, Fu YL (1973) Pyrolysis of cellulose. Carbohydr Res 29(1):113–122CrossRefGoogle Scholar
  36. Shafizadeh F, Furneaux RH, Cochran TG, Scholl JP, Sakai Y (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23(12):3525–3539CrossRefGoogle Scholar
  37. Soares S, Camino G, Levchik S (1998) Effect of metal carboxylates on the thermal decomposition of cellulose. Polym Degrad Stab 62(1):25–31CrossRefGoogle Scholar
  38. Tang WK, Neil WE (1964) Effects of flame retardants on pyrolysis and combustion of α-cellulose. J Polym Sci C Polym Symp 6(1):65–81CrossRefGoogle Scholar
  39. Teng H, Wei Y-C (1998) Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment. Ind Eng Chem Res 37(10):3806–3811CrossRefGoogle Scholar
  40. Vyazovkin S, Vincent L, Sbirrazzuoli N (2007) Thermal denaturation of collagen analyzed by isoconversional method. Macromol Biosci 7(11):1181–1186CrossRefGoogle Scholar
  41. Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle M, Goynes WR, Edwards JV, Hunter L, McAlister DD, Gamble GR (2006) Cotton fiber chemistry and technology. CRC Press, Boca RatonCrossRefGoogle Scholar
  42. Walters RN, Lyon RE (2003) Molar group contributions to polymer flammability. J Appl Polym Sci 87(3):548–563CrossRefGoogle Scholar
  43. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agriculture residue case studies. J Anal Appl Pyrolysis 91(1):1–33CrossRefGoogle Scholar
  44. Williams PT, Horne PA (1994) The role of metal salts in the pyrolysis of biomass. Renewable Energy 4(1):1–13CrossRefGoogle Scholar
  45. Yang CQ, He QL (2012) Textile heat release properties measured by microscale combustion calorimetry: experimental repeatability. Fire Mater 36(2):127–137CrossRefGoogle Scholar
  46. Yang CQ, He Q, Lyon RE, Hu Y (2009) Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab 95(2):108–115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  • Sunghyun Nam
    • 1
  • Brian D. Condon
    • 1
  • Marcus B. Foston
    • 2
  • SeChin Chang
    • 1
  1. 1.Southern Regional Research Center, Agricultural Research ServiceUSDANew OrleansUSA
  2. 2.Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations