Advertisement

Cellulose

, Volume 21, Issue 1, pp 463–472 | Cite as

Application of polyaniline/bacterial extracellular polysaccharide nanocomposite for removal and detoxification of Cr(VI)

  • V. Janaki
  • Mi-Na Shin
  • Song-Hee Kim
  • Kui-Jae Lee
  • Min Cho
  • A. K. Ramasamy
  • Byung-Taek Oh
  • Seralathan Kamala-Kannan
Original Paper

Abstract

Polyaniline/bacterial extracellular polysaccharide (Pn/EPS) nanocomposite was prepared by in situ polymerization of aniline using ammonium peroxydisulfate as oxidant. Transmission electron micrograph showed that the surface of the nanocomposite was rough, providing good possibility for adsorption of Cr(VI). Under optimized conditions, the nanocomposite removed 97.3 % (25 mg L−1) of Cr(VI) from aqueous solution. The Freundlich isotherm model and pseudo-first order rate expression better described the adsorption equilibrium of Pn/EPS nanocomposite. X-ray diffractogram peak for Cr2O3 (2θ = 24.5) in the nanocomposite confirmed the reduction of Cr(VI). Fourier transform infrared spectroscopy pattern of the nanocomposite confirmed the ionic interaction between Cr species and surface functional groups. The results of the study indicate that Pn/EPS nanocomposite could be used for the removal and detoxification of Cr(VI) from aqueous solution.

Keywords

Chromium Extracellular polymeric substances Metals Nanocomposite Polyaniline Reduction 

Notes

Acknowledgments

The research work was supported by the National Research Foundation of Korea (NRF) grant funded by the government (MEST) (No. 2011-0020202).

References

  1. Aksu Z, Gonen F (2003) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem 39:599–613CrossRefGoogle Scholar
  2. Aroua MK, Owlad M, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77CrossRefGoogle Scholar
  3. Bragadeeswaran S, Jeevapriya R, Prabhu K, Rani SS, Priyadharsini S, Balasubramanian T (2011) Exopolysaccharide production by Bacillus cereus GU812900, a fouling marine bacterium. Afr J Microbiol Res 5:4124–4132CrossRefGoogle Scholar
  4. Celik GY, Aslim B, Beyatli Y (2008) Characterization and production of the exopolysaccharides (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12 strains. Carbohydr Polym 73:178–182CrossRefGoogle Scholar
  5. Chang YC, Chang SW, Chen DH (2006) Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co(II) ions. React Funct Polym 66:335–341CrossRefGoogle Scholar
  6. Clark NB, Maher LJ (2009) Non-contact, radio frequency detection of ammonia with a printed polyaniline. React Funct Polym 69:594–600CrossRefGoogle Scholar
  7. Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yilmaz BC, Mazmanci MA (2011) Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ Sci Technol 45:2278–2285CrossRefGoogle Scholar
  8. Gu JD, Cheung KH (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15CrossRefGoogle Scholar
  9. Gu H, Rapole SB, Sharma J, Huang Y, Cao D, Colorado HA, Luo Z, Haldolaarachchige N, Young DP, Walters B, Wei S, Guo Z (2012) Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. RSC Adv 2:11007–11018CrossRefGoogle Scholar
  10. Harish R, Samuel J, Mishra R, Chandrasekaran N, Mukherjee A (2012) Bio-reduction of Cr(VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India. Biodegradation 23:487–496CrossRefGoogle Scholar
  11. Janaki V, Oh BT, Vijayaraghavan K, Kim JW, Kim SA, Ramasamy AK, Kamala-Kannan S (2012a) Application of bacterial extracellular polysaccharides/polyaniline composite for the treatment of remazol effluent. Carbohydr Polym 88:1002–1008CrossRefGoogle Scholar
  12. Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy AK, Kamala-Kannan S (2012b) Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr Polym 90:1437–1444CrossRefGoogle Scholar
  13. Kanwal F, Rehman R, Anwar J, Saeed M (2012) Batchwise removal of chromium(VI) by adsorption on novel synthesized polyaniline composites with various brans and isothermal modeling of equilibrium data. J Chem Soc Pak 34:1134–1139Google Scholar
  14. Kowalski Z (1994) Treatment of chromic tannery wastes. J Hazard Mater 37:137–144CrossRefGoogle Scholar
  15. Kumar PA, Ray M, Chakraborty S (2007) Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J Hazard Mater 143:24–32CrossRefGoogle Scholar
  16. Kumar PA, Chakraborty S, Ray M (2008) Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber. Chem Eng J 141:130–140CrossRefGoogle Scholar
  17. Liu X, Zhou W, Qian X, Shen J, An X (2013) Polyaniline/cellulose fiber composite prepared using persulfate as oxidant for Cr(VI)-detoxification. Carbohydr Polym 92:659–661CrossRefGoogle Scholar
  18. Lu AH, Zhong SJ, Chen J, Shi JX, Tang JL, Lu XY (2006) Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite. Environ Sci Technol 40:3064–3069CrossRefGoogle Scholar
  19. Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857CrossRefGoogle Scholar
  20. Neagu V (2009) Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups. J Hazard Mater 171:410–416CrossRefGoogle Scholar
  21. Olad A, Nabavi R (2007) Application of polyaniline for the reduction of toxic Cr(VI) in water. J Hazard Mater 147:845–851CrossRefGoogle Scholar
  22. Park D, Yun YS, Jo JH, Park JM (2005a) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39:533–540CrossRefGoogle Scholar
  23. Park D, Yun YS, Park JM (2005b) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem 40:2559–2565CrossRefGoogle Scholar
  24. Park JM, Park D, Yun YS (2008) XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. J Colloid Interface Sci 317:54–61CrossRefGoogle Scholar
  25. Pouget JP, Jozefowicz ME, Epstein AJ, Tang X, Macdiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24:779–789CrossRefGoogle Scholar
  26. Runping H, Pan H, Zhaohui C, Zhenhui Z, Mingsheng T (2008) Kinetics and isotherms of neutral red adsorption on peanut husk. J Environ Sci 20:1035–1041CrossRefGoogle Scholar
  27. Saikia JP, Banerjee S, Konwar BK, Kumar A (2010) Biocompatible novel starch/polyaniline composites: characterization, anti-cytotoxicity and antioxidant activity. Colloid Surf B 81:158–164CrossRefGoogle Scholar
  28. Samani MR, Borghei SM, Olad A, Chaichi MJ (2010) Removal of chromium from aqueous solution using polyaniline–poly ethylene glycol composite. J Hazard Mater 184:248–254CrossRefGoogle Scholar
  29. Shanker AK, Venkateswarlu B (2011) Chromium: environmental pollution, health effects and mode of action. In: Nriagu J (ed) Encyclopedia of environmental health, Elsevier, NY, USA, pp 650–659Google Scholar
  30. Shen C, Chen H, Wu S, Wen Y, Li L, Jiang Z, Li M, Liu W (2013) Highly efficient detoxification of Cr(VI) by chitosan-Fe(III) complex: process and mechanism studies. J Hazard Mater 244–245:689–697CrossRefGoogle Scholar
  31. Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894CrossRefGoogle Scholar
  32. World Health Organization (1993) Guidelines for drinking-water quality. World Health Organization, GenevaGoogle Scholar
  33. Yavuz AG, Dincturk-Atalay E, Uygun A, Gode F, Aslan E (2011) A comparison study of adsorption of Cr(VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites. Desalination 279:325–331CrossRefGoogle Scholar
  34. Zheng Y, Wang W, Huang D, Wang A (2012) Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal. Chem Eng J 191:154–161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • V. Janaki
    • 1
  • Mi-Na Shin
    • 2
  • Song-Hee Kim
    • 2
  • Kui-Jae Lee
    • 2
  • Min Cho
    • 2
  • A. K. Ramasamy
    • 1
  • Byung-Taek Oh
    • 2
  • Seralathan Kamala-Kannan
    • 2
  1. 1.Department of ChemistryPeriyar UniversitySalemIndia
  2. 2.Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource SciencesChonbuk National UniversityIksanSouth Korea

Personalised recommendations