Advertisement

Cellulose

, Volume 21, Issue 2, pp 897–908 | Cite as

Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation

  • Pan Chen
  • Yoshiharu Nishiyama
  • Jean-Luc Putaux
  • Karim Mazeau
Original Paper

Abstract

We have performed molecular dynamics calculations using a revised version of the Gromos56Acarbo force field to understand the consequences of the different potential hydrogen bonding patterns on the structural stability and thermal behavior of the Iα and Iβ forms of native cellulose. For each allomorph, we considered three patterns of hydrogen bonds: two patterns obtained from neutron diffraction data refinement and a regular mixture of the two. Upon annealing, the hydrogen bonding schemes of cellulose Iβ, irrespective of the starting structure, re-arranged into the main hydrogen bond pattern experimentally observed (pattern A). On the other hand, the Iα structures, irrespective of the starting hydrogen bonding pattern, converged to a non-experimental structure where the adjacent chains are shifted along the chain direction by 0.12 nm in the hydrogen-bonded plane, and the hydroxymethyl group conformation alternates between gt and tg along the chain. The exotic structure in Iα might be a consequence of a deficiency in force field parameters and/or potential molecular arrangement in less crystalline cellulose.

Keywords

Cellulose allomorphs Hydrogen bonds Molecular dynamics Crystal structure Temperature effect Phase transition 

Supplementary material

10570_2013_53_MOESM1_ESM.docx (960 kb)
Supplementary material 1 (DOCX 960 kb)

References

  1. Agarwal V, Huber GW, Conner WC Jr, Auerbach SM (2011) Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. J Chem Phys 135:134506.1–134506.13CrossRefGoogle Scholar
  2. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefGoogle Scholar
  3. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  4. Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRefGoogle Scholar
  5. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101–014107CrossRefGoogle Scholar
  6. Chen P, Nishiyama Y, Mazeau K (2012) Torsional entropy at the origin of the reversible temperature-induced phase transition of cellulose. Macromolecules 45:362–368CrossRefGoogle Scholar
  7. Chen P, Nishiyama Y, Mazeau K (in preparation) Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphsGoogle Scholar
  8. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  9. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203Google Scholar
  10. Hansen HS, Hünenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32:998–1032CrossRefGoogle Scholar
  11. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  12. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  13. Hidaka H, Kim U-J, Wada M (2010) Synchrotron X-ray fiber diffraction study on the thermal expansion behavior of cellulose crystals in tension wood of Japanese poplar in the low-temperature region. Holzforschung 64:167–171CrossRefGoogle Scholar
  14. Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484CrossRefGoogle Scholar
  15. Horii F, Hirai A, Kitamaru R (1983) Solid-state carbon-13 NMR study of conformations of oligosaccharides and cellulose. Conformation of CH2OH group about the exo-cyclic carbon–carbon bond. Polym Bull 10:357–361CrossRefGoogle Scholar
  16. Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692CrossRefGoogle Scholar
  17. Matthews JF, Beckham GT, Bergenstråhle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748CrossRefGoogle Scholar
  18. Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349CrossRefGoogle Scholar
  19. Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403CrossRefGoogle Scholar
  20. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRefGoogle Scholar
  21. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  22. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefGoogle Scholar
  23. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRefGoogle Scholar
  24. Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Part B Polym Phys 40:1095–1102CrossRefGoogle Scholar
  25. Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose Iα to Iβ. Polym J (Tokyo, Jpn) 35:155–159CrossRefGoogle Scholar
  26. Wada M, Hori R, Kim U-J, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Iβ and its high-temperature phase. Polym Degrad Stab 95:1330–1334CrossRefGoogle Scholar
  27. Watanabe A, Morita S, Ozaki Y (2006) Study on temperature-dependent changes in hydrogen bonds in cellulose Iβ by infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation spectroscopy. Biomacromolecules 7:3164–3170CrossRefGoogle Scholar
  28. Watanabe A, Morita S, Ozaki Y (2007) Temperature-dependent changes in hydrogen bonds in cellulose Iα studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Iβ. Biomacromolecules 8:2969–2975CrossRefGoogle Scholar
  29. Zhang Q, Bulone V, Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pan Chen
    • 1
  • Yoshiharu Nishiyama
    • 1
  • Jean-Luc Putaux
    • 1
  • Karim Mazeau
    • 1
  1. 1.Centre de Recherches Sur Les Macromolécules Végétales (CERMAV-CNRS)Grenoble Cedex 9France

Personalised recommendations