Skip to main content
Log in

Titrimetric methods for the determination of surface and total charge of functionalized nanofibrillated/microfibrillated cellulose (NFC/MFC)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Total and surface charge of three different carboxymethylated nanofibrillated/microfibrillated cellulose (NFC/MFC) samples were investigated by using titrimetric methods (conductometric and polyelectrolyte (PE) titrations). Conductometric titration was found to be suitable method for the NFC total charge measurements when the back titration with HCl was applied. Surface charge measurements of NFC/MFC were conducted by using both indirect and direct PE titrations. The direct PE titration was found to be a more suitable method for the surface charge determination of NFC/MFC whereas the indirect PE titration produced too high surface charge values. This is presumably due to kinetically locked polyelectrolyte conformations on the NFC/MFC surfaces or entrapment of residual polymer after adsorption onto the NFC/MFC gel network. Finally, NFC was propargyl-functionalized and the changes in surface and total charge were successfully monitored and compared to those of propargyl-functionalized pulp. A good correlation between the titrimetric methods and elemental analysis was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11:1060–1066

    Article  CAS  Google Scholar 

  • Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13:736–742

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Horvath AE, Lindström T, Laine J (2006) On the indirect polyelectrolyte titration of cellulosic fibers. Conditions for charge stoichiometry and comparison with ESCA. Langmuir 22:824–830

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Johansson L, Tammelin T, Campbell JM, Setälä H, Österberg M (2011) Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose. Soft Matter 7:10917–10924

    Article  CAS  Google Scholar 

  • Junka K, Filpponen I, Johansson L, Kontturi E, Rojas OJ, Laine J (2012) A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydr Polym. doi:10.1016/j.carbpol.2012.11.063

    Google Scholar 

  • Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Sven Papperstidn 87:R48–R53

    CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50:5438–5466

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Littunen K, Hippi U, Johansson L, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenisation for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibres prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Solala I, Volperts A, Andersone A, Dizhbite T, Mironova-Ulmane N, Vehniäinen A, Pere J, Vuorinen T (2011) Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66:477–483

    Google Scholar 

  • Swerin A, Ödberg L, Lindström T (1990) Deswelling of hardwood kraft pulp fibres by cationic polymers: the effect of wet pressing and sheet properties. Nord Pulp Pap Res J 5:188–196

    Article  CAS  Google Scholar 

  • Taniguchi T (1996) Microfibrillation of natural fibrous materials. J Soc Mater Sci Jpn 45:472–473

    CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173

    Google Scholar 

  • Walecka JA (1956) An investigation of low degree of substitution carboxymethylcelluloses. Tappi J 39:458–463

    CAS  Google Scholar 

  • Winter L, Wågberg L, Ödberg L, Lindström T (1986) Polyelectrolytes adsorbed on the surface of cellulosic materials. J Colloid Interface Sci 111:537–543

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Naseva2 project. Graduate School for Biomass Refining (BIOREGS) and Refining Lignocellulosics to Advanced Polymers and Fibers (PolyRefNorth) network are thanked for personal financial support (KJ). Ms. Gunborg Glad-Nordmark, Ms. Åsa Blademo, Ms. Ritva Kivelä, Ms. Anu Anttila, Ms. Marja Kärkkäinen and Ms. Johanna Mareta are thanked for laboratory assistance. KJ acknowledges fruitful discussions with Ali Naderi and Jonas Sundström (Innventia AB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoliina Junka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junka, K., Filpponen, I., Lindström, T. et al. Titrimetric methods for the determination of surface and total charge of functionalized nanofibrillated/microfibrillated cellulose (NFC/MFC). Cellulose 20, 2887–2895 (2013). https://doi.org/10.1007/s10570-013-0043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0043-z

Keywords

Navigation