, Volume 20, Issue 5, pp 2491–2504 | Cite as

Multi-functional coating of cellulose nanocrystals for flexible packaging applications

  • Fei Li
  • Paolo Biagioni
  • Monica Bollani
  • Andrea Maccagnan
  • Luciano Piergiovanni
Original Paper


In this paper, we systematically address the performance of cellulose nanocrystals (CNs) coated flexible food packaging films. Firstly, the morphology of CNs from cotton linters and homogeneity of its coating on different substrates were characterized by transmission electronic microscopy and atomic force microscopy. Then, the 1.5 μm thick CNs coating on polyethylene terephthalate (PET), oriented polypropylene, oriented polyamide (OPA), and cellophane films were characterized for their mechanical, optical, anti-fog, and barrier properties. CNs coating reduces the coefficient of friction while maintaining high transparency (~90 %) and low haze (3–4 %) values, and shows excellent anti-fog properties and remarkable oxygen barrier (oxygen permeability coefficient of CNs coating, P’O2, 0.003 cm3 μm m−2 24 h−1 kPa−1). In addition, the Gelbo flex test combined with oxygen permeance (PO2) measurements and optical microscopy are firstly reported for evaluating the durability of coatings, revealing that the CNs coated PET and OPA provide the best performance among the investigated coated films. CNs are therefore considered to be a promising multi-functional coating for flexible food packaging.


Cellulose nanocrystals (CNs) Food packaging Oxygen barrier Anti-fog properties Bio-coating 



We wish to thank Prof. Franco Faoro from Department of Plant Production, Università degli Studi di Milano (Milano, Italy), who carried out TEM observations, Dr. Roberto Galbasini and Dr. Giorgio Bottini, from Goglio S. p. A. (VA, Italy), who helped in oxygen and water vapor barrier measurements, and Dr. Christian Furiosi from SAPICI S. p. A (Milan, Italy), who helped in particle size distribution measurement.


  1. Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRefGoogle Scholar
  2. Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M et al (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25:7675–7685CrossRefGoogle Scholar
  3. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRefGoogle Scholar
  4. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474CrossRefGoogle Scholar
  5. Belbekhouche S, Bras J, Siqueira G, Chappey C, Lebrun L, Khelifi B et al (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83:1740–1748CrossRefGoogle Scholar
  6. Briscoe BJ, Galvin KP (1991) The effect of surface fog on the transmittance of light. Sol Energy 46:191–197CrossRefGoogle Scholar
  7. Cerclier C, Cousin F, Bizot H, Moreau C, Cathala B (2010) Elaboration of spin-coated cellulose-xyloglucan multilayered thin films. Langmuir 26:17248–17255CrossRefGoogle Scholar
  8. Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237CrossRefGoogle Scholar
  9. Chatham H (1996) Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf Coat Technol 78:1–9CrossRefGoogle Scholar
  10. Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf a-Physicochem Eng Aspects 325:44–51CrossRefGoogle Scholar
  11. Creatore M, Palumbo F, d’Agostino R (2002) Deposition of SiOx films from hexamethyldisiloxane/oxygen radiofrequency glow discharges: process optimization by plasma diagnostics. Plasmas Polym 7:291–310CrossRefGoogle Scholar
  12. da Silva JBA, Pereira FV, Druzian JI (2012) Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals. J Food Sci 77:N14–N19CrossRefGoogle Scholar
  13. Dankovich TA, Gray DG (2011) Contact angle measurements on smooth nanocrystalline cellulose (I) thin films. J Adhes Sci Technol 25:699–708CrossRefGoogle Scholar
  14. de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480CrossRefGoogle Scholar
  15. Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495CrossRefGoogle Scholar
  16. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846CrossRefGoogle Scholar
  17. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRefGoogle Scholar
  18. Erlat AG, Spontak RJ, Clarke RP, Robinson TC, Haaland PD, Tropsha Y et al (1999) SiOx gas barrier coatings on polymer substrates: morphology and gas transport considerations. J Phys Chem B 103:6047–6055CrossRefGoogle Scholar
  19. Farris S, Introzzi L, Piergiovanni L (2009) Evaluation of a bio-coating as a solution to improve barrier, friction and optical properties of plastic films. Packag Technol Sci 22:69–83CrossRefGoogle Scholar
  20. Farris S, Introzzi L, Fuentes-Alventosa JM, Santo N, Rocca R, Piergiovanni L (2012) Self-assembled pullulan-silica oxygen barrier hybrid coatings for food packaging applications. J Agric Food Chem 60:782–790CrossRefGoogle Scholar
  21. Fortunati E, Peltzer M, Armentano I, Torre L, Jimenez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956CrossRefGoogle Scholar
  22. Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRefGoogle Scholar
  23. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRefGoogle Scholar
  24. Fukuzumi H, Saito T, Iwamoto S, Kumamoto Y, Ohdaira T, Suzuki R et al (2011) Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Biomacromolecules 12:4057–4062CrossRefGoogle Scholar
  25. Fukuzumi H, Saito T, Isogai A (2012) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym. doi: 10.1016/j.carbpol.2012.04.069
  26. Ghasemi H, Carreau PJ, Kamal MR, Tabatabaei SH (2012) Properties of PET/clay nanocomposite films. Polym Eng Sci 52:420–430CrossRefGoogle Scholar
  27. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A et al (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRefGoogle Scholar
  28. Guillaume C, Pinte J, Gontard N, Gastaldi E (2010) Wheat gluten-coated papers for bio-based food packaging: structure, surface and transfer properties. Food Res Int 43:1395–1401CrossRefGoogle Scholar
  29. Haas KH, Amberg-Schwab S, Rose K, Schottner G (1999) Functionalized coatings based on inorganic-organic polymers (ORMOCER (R) s) and their combination with vapor deposited inorganic thin films. Surf Coat Technol 111:72–79CrossRefGoogle Scholar
  30. Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(epsilon-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010CrossRefGoogle Scholar
  31. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  32. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1493–1505CrossRefGoogle Scholar
  33. Hoeger I, Rojas OJ, Efimenko K, Velev OD, Kelley SS (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7:1957–1967CrossRefGoogle Scholar
  34. Howarter JA, Youngblood JP (2008) Self-cleaning and next generation anti-fog surfaces and coatings. Macromol Rapid Commun 29:455–466CrossRefGoogle Scholar
  35. Hult EL, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17:575–586CrossRefGoogle Scholar
  36. Introzzi L, Fuentes-Alventosa JM, Cozzolino CA, Trabattoni S, Tavazzi S, Bianchi CL et al (2012) “Wetting Enhancer” pullulan coating for antifog packaging applications. ACS Appl Mater Interfaces 4:3692–3700CrossRefGoogle Scholar
  37. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  38. Jang W-S, Rawson I, Grunlan JC (2008) Layer-by-layer assembly of thin film oxygen barrier. Thin Solid Films 516:4819–4825CrossRefGoogle Scholar
  39. Kato Y, Kaminaga J, Matsuo R, Isogai A (2005) Oxygen permeability and biodegradability of polyuronic acids prepared from polysaccharides by TEMPO-mediated oxidation. J Polym Environ 13:261–266CrossRefGoogle Scholar
  40. Kontturi E, Johansson LS, Kontturi KS, Ahonen P, Thune PC, Laine J (2007) Cellulose nanocrystal submonolayers by spin coating. Langmuir 23:9674–9680CrossRefGoogle Scholar
  41. Krikorian V, Pochan DJ (2003) Poly (l-lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties. Chem Mater 15:4317–4324CrossRefGoogle Scholar
  42. Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16:149–158CrossRefGoogle Scholar
  43. Lee DS, Yam KL, Piergiovanni L (2008) Chapter 4: Permeation of gas and vapor. In: Food packaging science and technology. CRC Press–Taylor & Francis Group, Boca Raton, London, New York, pp 58–59, 86–93Google Scholar
  44. Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B 36:81–90CrossRefGoogle Scholar
  45. Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92:2128–2134CrossRefGoogle Scholar
  46. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRefGoogle Scholar
  47. Lordan S, Kennedy JE, Higginbotham CL (2011) Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. J Appl Toxicol 31:27–35CrossRefGoogle Scholar
  48. Martinez-Sanz M, Lopez Rubio A, Lagaron JM (2012) On the optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromolecules 13:3887–3899Google Scholar
  49. Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403CrossRefGoogle Scholar
  50. Montaño-Leyva B, Ghizzi D, da Silva G, Gastaldi E, Torres-Chávez P, Gontard N, Angellier-Coussy H (2013) Biocomposites from wheat proteins and fibers: structure/mechanical properties relationships. Ind Crops Prod 43:545–555CrossRefGoogle Scholar
  51. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  52. Muzzarelli RAA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG (2012) Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym 87:995–1012CrossRefGoogle Scholar
  53. No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72:R87–R100CrossRefGoogle Scholar
  54. Noorani S, Simonsen J, Atre S (2007) Nano-enabled microtechnology: polysulfone nanocomposites incorporating cellulose nanocrystals. Cellulose 14:577–584CrossRefGoogle Scholar
  55. Nuraje N, Asmatulu R, Cohen RE, Rubner MF (2010) Durable antifog films from layer-by-layer molecularly blended hydrophilic polysaccharides. Langmuir 27:782–791CrossRefGoogle Scholar
  56. Priolo MA, Gamboa D, Holder KM, Grunlan JC (2010) Super gas barrier of transparent polymer–clay multilayer ultrathin films. Nano Lett 10:4970–4974CrossRefGoogle Scholar
  57. Ray SS, Yamada K, Okamoto M, Ueda K (2002) Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2:1093–1096CrossRefGoogle Scholar
  58. Ray SS, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857–866CrossRefGoogle Scholar
  59. Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433CrossRefGoogle Scholar
  60. Ringus DL, Moraru CI (2013) Pulsed Ligh inactivation of Listeria innocua on food packaging materials of different surface roughness and reflectivity. J Food Eng 114:331–337CrossRefGoogle Scholar
  61. Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Fukuzumi H et al (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose 19:705–711CrossRefGoogle Scholar
  62. Sanchez-Garcia MD, Hilliou L, Lagaron JM (2010) Morphology and water barrier properties of nanobiocomposites of k/i-hybrid carrageenan and cellulose nanowhiskers. J Agric Food Chem 58:12847–12857CrossRefGoogle Scholar
  63. Sánchez-Valdes S, López-Quintanilla ML, Ramírez-Vargas E, Medellín-Rodríguez FJ, Gutierrez-Rodriguez JM (2006) Effect of ionomeric compatibilizer on clay dispersion in polyethylene/clay nanocomposites. Macromol Mater Eng 291:128–136CrossRefGoogle Scholar
  64. Shellenberger K, Logan BE (2001) Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ Sci Technol 36:184–189CrossRefGoogle Scholar
  65. Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17:289–298CrossRefGoogle Scholar
  66. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  67. Svagan AJ, Åkesson A, Cárdenas M, Bulut S, Knudsen JC, Risbo J et al (2012) Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties. Biomacromolecules 13:397–405CrossRefGoogle Scholar
  68. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78CrossRefGoogle Scholar
  69. van Oss CJ (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16:177–190CrossRefGoogle Scholar
  70. van Oss CJ (2006) In: Dekker M (ed) Interfacial forces in aqueous media. CRC Press, New York, pp 18–28, 93–107Google Scholar
  71. Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci-Pure Appl Chem A32:787–796Google Scholar
  72. Yang Y-H, Haile M, Park YT, Malek FA, Grunlan JC (2011) Super gas barrier of all-polymer multilayer thin films. Macromolecules 44:1450–1459CrossRefGoogle Scholar
  73. Yue Y, Zhou C, French A, Xia G, Han G, Wang Q et al (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187CrossRefGoogle Scholar
  74. Zhang L, Sun J (2010) Layer-by-layer codeposition of polyelectrolyte complexes and free polyelectrolytes for the fabrication of polymeric coatings. Macromolecules 43:2413–2420CrossRefGoogle Scholar
  75. Zhou CJ, Wang QW, Wu QL (2012) UV-initiated crosslinking of electrospun poly(ethylene oxide) nanofibers with pentaerythritol triacrylate: effect of irradiation time and incorporated cellulose nanocrystals. Carbohydr Polym 87:1779–1786CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fei Li
    • 1
  • Paolo Biagioni
    • 2
  • Monica Bollani
    • 3
  • Andrea Maccagnan
    • 4
  • Luciano Piergiovanni
    • 1
  1. 1.Packaging Division, Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Fisica and CNISMPolitecnico di MilanoMilanItaly
  3. 3.IFN-CNR, L-NESSComoItaly
  4. 4.Packaging DivisionGOGLIO S.p.A.DaverioItaly

Personalised recommendations