Advertisement

Cellulose

, Volume 20, Issue 5, pp 2481–2490 | Cite as

Sorption of iron(III)–alginate complexes on cellulose fibres

  • Uttam C. Paul
  • Avinash P. Manian
  • Barbora Široká
  • Heinz Duelli
  • Thomas Bechtold
Original Paper

Abstract

Multivalent ions take a significant role in the sorption of soluble polysaccharides on solid cellulose substrates and thus demonstrate an important principle in structural polysaccharide organisation. Sorption of Fe(III)–alginate complexes on lyocell fibres as model for the insoluble cellulose matrix has been studied between pH 3–13, at 30 and 60 °C. Sorption maximum of the Fe(III)–alginate complex was observed at pH 3 where the sorbed amounts of alginate and iron were 6,600 and 85 mg iron per kg cellulose respectively. Under the experimental conditions used, a concentration of 0.05 mM Fe(III) is sufficient to achieve surface sorption of Fe(III)–alginate complex. The alginate sorption exhibited minor dependence on molar ratio of Fe(III) to alginate. In environmental scanning electron microscopy no deposition of Fe-hydroxides on the fiber surface was detected. The thickness of the adsorbed Fe(III)–alginate layer on the fiber surface was estimated with 12–22 nm. Tensile strength and abrasion resistance of Fe(III)–alginate treated fibers were not reduced through the sorption treatment. Alginate modified cellulose is of interest as material for medical application, as sorbent and textile finish.

Keywords

Alginate Cellulose Polysaccharide Sorption Iron–polysaccharide complex Iron 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007–2013] under Grant Agreement No. 214015. The authors would like to acknowledge to Versuchsanstalt-Textil and the HTL-Dornbirn for the use of their facilities.

References

  1. Barbosa AM, Granja LP, Barrias CC, Amaral FI (2005) Polysaccharides as scaffolds for bone regeneration. ITBM–RBM 26:212–217Google Scholar
  2. Bechtold T, Burtscher E, Turcanu A (2002) Ca2+–Fe3+-d-gluconate-complexes in alkaline solution complex stabilities and electrochemical properties. J Chem Soc Dalton Trans 2683–2688Google Scholar
  3. Bechtold T, Manian AP, Ozturk HB, Paul U, Siroka B, Siroky J, Soliman H, Vo LTT, Vu-Manh H (2013) Ion-interactions as driving force in polysaccharide assembly. Carbohydr Polym 93:316–323CrossRefGoogle Scholar
  4. Bocharova N, Zavalov O, MacVittie K, Arugula MA, Guz NV, Dokukin ME, Halámek J, Sokolov I, Privman V, Katz E (2012) Biochemical logic approach to biomarker-activated drug release. J Mater Chem 22:19709–19717CrossRefGoogle Scholar
  5. Bredereck K, Hermanutz F (2005) Man-made cellulos. Rev Progr Color Technol 35:59–75CrossRefGoogle Scholar
  6. Cain RJ, Lalgudi RS (2011) Stain-repellent compositions for textile treatment. WO2011023982A1, 261888Google Scholar
  7. Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40(5):1516–1523CrossRefGoogle Scholar
  8. Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553CrossRefGoogle Scholar
  9. Cifci C, Sanli O (2010) Crossflow filtration of iron(III), copper(II), and cadmium(II) aqueous solutions with alginic acid/cellulose composite membranes. J Appl Polym Sci 115:616–623CrossRefGoogle Scholar
  10. Cifci C, Sanli O (2011) Poly(vinyl pyrrolidone)-enhanced crossflow filtration of Fe(III), Cu(II) and Cd(II) ions using alginic acid/cellulose composite membranes. Desalin Water Treat 29:87–95CrossRefGoogle Scholar
  11. Deng H, Zhou X, Wang X, Zhang C, Ding B, Zhang Q, Du Y (2010) Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydr Polym 80:474–479CrossRefGoogle Scholar
  12. Emam HE, Manian AP, Široká B, Bechtold T (2012) Copper inclusion in cellulose using sodium d-gluconate complexes. Carbohydr Polym 90:1345–1352CrossRefGoogle Scholar
  13. Ferrari E, Saladini M (2004) Iron (III) complexing ability of carbohydrate derivatives. J Inorg Biochem 98:1002–1008CrossRefGoogle Scholar
  14. Finotelli VP, Morales AM, Rocha-Leao HM, Baggio-Saitovitch ME, Rossi MA (2004) Magnetic studies of iron (III) nanoparticles in alginate polymer for drug delivery applications. Mater Sci Eng C24:625–629Google Scholar
  15. Franke W (1931) Iron complexes of tartaric acid. Liebigs Ann Chem 486:242–284CrossRefGoogle Scholar
  16. Gorensek M, Bukosek V (2006) Zinc and alginate for multipurpose textiles. Acta Chem Slov 53:223–228Google Scholar
  17. Griffiths B, Jacques E, Bishop SM (1998) Wound dressing comprising a blend of cellulose and alginate fibers. WO9809590A1, 169427Google Scholar
  18. Hammer KD, Winter H (1991) Flat or tubular films of hydrated cellulose. DE4002083A1, 561491Google Scholar
  19. Huang C–C, Lai S-H, Cheng S-L, Chang G-W (2009) Designed artificial skins prepared from modified microbial cellulose dressings for wound healing. PMSE Prepr 101:1601–1602Google Scholar
  20. Jin Z, Güven G, Bocharova V, Halamek J, Tokarev I, Minko S, Melman A, Mandler D, Katz E (2012a) Electrochemically controlled drug-mimicking protein release from iron–alginate thin-films associated with an electrode. ACS Appl Mater Interfaces 4:466–475CrossRefGoogle Scholar
  21. Jin Z, Harvey AM, Mailloux S, Halámek J, Bocharova V, Twiss MR, Katz E (2012b) Electrochemically stimulated release of lysozyme from an alginate matrix cross-linked with iron cations. J Mater Chem 22:19523–19528CrossRefGoogle Scholar
  22. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascination biopolymer and sustainable raw material. Angew Chem 44:3358–3393CrossRefGoogle Scholar
  23. Knittel D, Schollmeyer E (2008) Unconventional textile finishes part 2: textile finishes with alginate and pectin and cellulose. Melliand Textilberichte 89:32–35Google Scholar
  24. Kongdee A, Bechtold T (2004) The complexation of Fe(III)–ions in cellulose fibers: a fundamental property. Carbohydr Polym 56:47–53CrossRefGoogle Scholar
  25. Liu M, Yue X, Dai Z, Ma Y, Xing L, Zha Z, Liu S, Li Y (2009) Novel thrombo-resistant coating based on iron–polysaccharide complex multilayers. ACS Appl Mater Interfaces 1:113–123CrossRefGoogle Scholar
  26. Machida-Sano I, Matsuda Y, Namiki H (2009) In vitro adhesion of human dermal fibroblasts on iron cross-linked alginate films. Biomed Mater 4:025008CrossRefGoogle Scholar
  27. Mehltretter CL, Alexander BH, Rist CE (1953) Sequestration by sugar acids. Ind Eng Chem 45:2782CrossRefGoogle Scholar
  28. Mueller PJ, Christner A, Feustel M, Möhring U, Neudeck A (2004) Biotechnology and textile structures (part 2). Melliand Textilberichte 85:490–492Google Scholar
  29. Naito N, Kawanaka S, Wada S (2005) Manufacture of water-absorption materials JP2005263858A, 1045099Google Scholar
  30. Nesterova VM, Walton AS, Webb J (2000) Nanoscale iron(III) oxyhydroxy aggregates formed in the presence of functional water-soluble polymers: models for iron(III) biomineralisation processes. J Inorg Biochem 79:109–118CrossRefGoogle Scholar
  31. Paul UC, Manian AP, Široká B, Duelli H, Bechtold T (2012) Sorption of anionic polysaccharides by cellulose. Carbohydr Polym 87:695–700CrossRefGoogle Scholar
  32. Pecsok RL, Sandera J (1955) The gluconate complexes II The ferric-gluconate system. J Am Chem Soc 77(6):1489–1494CrossRefGoogle Scholar
  33. Russo R, Abbate M, Malinconico M, Santagata G (2010) Effect of polyglycerol and the crosslinking on the physical properties of a blend alginate-hydroxyethylcellulose. Carbohydr Polym 82:1061–1067CrossRefGoogle Scholar
  34. Seely RG, Hart LR (1976) Binding of aluminum and aluminum alizarin to alginate. Macromolecules 9(3):483–489CrossRefGoogle Scholar
  35. Sipos P, St Pierre GT, Tombacz E, Webb J (1995) Rod-like iron (III) oxyhydroxide particles in iron (III)–polysaccharide solutions. J Inorg Biochem 58:129–138CrossRefGoogle Scholar
  36. Somsook E, Hinsin D, Buakhrong P, Teanchai R, Mophan N, Pohmakotr M, Shiowatana J (2005) Interactions between iron (III) and sucrose, dextran, or starch in complexes. Carbohydr Polym 61:281–287CrossRefGoogle Scholar
  37. Son HJ, Jung JH, Son T-W (2012) Anionic polymer salt-coated cellulose fibers with good antibacterial and deodorization effect. KR1125253B1, 432275Google Scholar
  38. Sun T, Lonsky W, Li Y, Qin J, Zhang X, Dutkiewicz J (2001) Cellulosic fibrous materials containing an activating agent for superabsorbent polymers. WO2001047570A1, 489271Google Scholar
  39. Sreeram JK, Shrivastava YH, Nair UB (2004) Studies on the nature of interaction of iron (III) with alginates. Biochemica Biophysica Acta 1670:121–125CrossRefGoogle Scholar
  40. Vu-Manh H, Öztuerk H, Bechtold T (2010) Swelling and dissolution mechanism of lyocell fiber in aqueous alkaline solution containing ferric tartaric acid complex. Cellulose 17:521–532CrossRefGoogle Scholar
  41. Wagberg L (2000) Polyelectrolyte adsorption onto cellulose fibers—a review. Nord Pulp Pap Res J 15(5):586–597CrossRefGoogle Scholar
  42. Weerawarna SA, Bing S (2008) Preparation of cellulose fibers having superabsorbent particles adhered to cellulose fibers and adhering superabsorbent particles to cellulose fibers. US20080078514A1, 419453Google Scholar
  43. Zhang L, Zhou D, Wang H, Cheng S (1997) Ion-exchange membranes blended by cellulose cuoxam with alginate. J Membr Sci 124:195–201CrossRefGoogle Scholar
  44. Zhang L, Zhou J, Zhou D, Tang Y (1999) Adsorption of cadmium and strontium on cellulose/alginic acid ion-exchange membrane. J Membr Sci 162:103–109CrossRefGoogle Scholar
  45. Zhang L, Cai J, Zhou J, Tang Y (2004) Adsorption of Cd2+ and Cu2+ on ion-exchange beads from cellulose/alginic acid blend. Sep Sci Technol 39:1203–1219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Uttam C. Paul
    • 1
  • Avinash P. Manian
    • 1
  • Barbora Široká
    • 1
  • Heinz Duelli
    • 2
  • Thomas Bechtold
    • 1
  1. 1.Research Institute of Textile Chemistry and Textile PhysicsUniversity of InnsbruckDornbirnAustria
  2. 2.Research Center MicrotechniqueVorarlberg University of Applied SciencesDornbirnAustria

Personalised recommendations