, Volume 20, Issue 5, pp 2439–2449 | Cite as

Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible, safe and sustainable lithium-based batteries

  • Annalisa Chiappone
  • Jijeesh R. Nair
  • Claudio Gerbaldi
  • Roberta Bongiovanni
  • Elisa Zeno
Original Paper


Fully-solid methacrylic-based thermo-set polymer electrolyte membranes reinforced with nanoscale micro-fibrillated cellulose (MFC) fibres are here presented. The preparation is carried out in water and the membrane is obtained by an easy and reliable UV-induced polymerisation via a free radical mechanism; thus, the overall process is highly energy efficient and environmentally friendly. The morphology of the composite electrolytes as well as the mapping of the elements present in the system is investigated by scanning electron microscopy, while the thermal behaviour is investigated by thermo-gravimetric analysis and differential scanning calorimetry. The composite polymer electrolytes prepared by MFC fibres reinforcement exhibit excellent mechanical properties with a Young’s modulus as high as 32 MPa. Acceptable ionic conductivity values (above 0.1 mS cm−1 at 50 °C) and good overall electrochemical performances are maintained, ensuring that such specific approach would make these hybrid organic, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible fully-solid lithium based power sources, especially for moderately high temperature applications.

Graphical Abstract


Solid polymer electrolyte Cellulose microfibril UV photo polymerisation Lithium battery Mechanical properties 



The authors kindly acknowledge Lara Jabbour (INPG Pagora) for her collaboration with SEM-EDX analysis and Davide Beneventi for his supervision.


  1. Alloin F, D’Aprea A et al (2010) Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim Acta 55(18):5186–5194CrossRefGoogle Scholar
  2. Armand MB, Chabagno SM, Duclot M (1978) Extended abstracts. Second international meeting on solid electrolytes. St. Andrews, ScotlandGoogle Scholar
  3. Azizi Samir MAS, Alloin F et al (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393CrossRefGoogle Scholar
  4. Azizi Samir MAS, Alloin F et al (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRefGoogle Scholar
  5. Brown EE, Laborie M-PG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8(10):3074–3081CrossRefGoogle Scholar
  6. Bruce DM, Hobson RN et al (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A Appl Sci and Manuf 36(11):1486–1493CrossRefGoogle Scholar
  7. Chiappone A, Nair JR et al (2011) Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J Power Sources 196(23):10280–10288CrossRefGoogle Scholar
  8. Croce F, Appetecchi GB et al (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 3946692:456–458Google Scholar
  9. Dias FB, Plomp L et al (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88(2):169–191CrossRefGoogle Scholar
  10. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954CrossRefGoogle Scholar
  11. Fouassier JP (1995) Photoinitiation, photopolymerization, and photocuring fundamentals and applications. Hanser Publishers, New YorkGoogle Scholar
  12. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceramic Soc 8(6):339–355CrossRefGoogle Scholar
  13. Gerbaldi C, Nair JR et al (2009) Highly ionic conducting methacrylic-based gel-polymer electrolytes by UV-curing technique. J Appl Electrochem 39(11):2199–2207CrossRefGoogle Scholar
  14. Herrick FW, Casebier RL, et al. (1983) Microfibrillated cellulose: morphology and accessibility. In: Sarko A (ed.) Proceedings of the ninth cellulose conference. Applied polymer symposia, 37. Wiley, New York City, pp 797–813Google Scholar
  15. Jabbour L, Destro M et al (2012) Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J Mat Chem 22(7):3227–3233CrossRefGoogle Scholar
  16. Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose. doi: 10.1007/s10570-013-9973-8
  17. Janardhnan S, Sain MM (2006) Isolation of cellulose microfibrils: an enzymatic approach. BioResources 1(2):176–188Google Scholar
  18. Kim YW, Lee W et al (2000) Relation between glass transition and melting of PEO–salt complexes. Electrochim Acta 45(8–9):1473–1477CrossRefGoogle Scholar
  19. Krawiec W, Scanlon L G, Fellner J-P, Vaia R A, Vasudevan S, Giannelis E P, (1995) Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources 54:310–315Google Scholar
  20. López-Rubio A, Lagaron JM et al (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Pol 68(4):718–727CrossRefGoogle Scholar
  21. Lu J, Wang T et al (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A Appl Sci Manuf 39(5):738–746CrossRefGoogle Scholar
  22. Meligrana G, Gerbaldi C et al (2006) Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J Power Sources 160(1):516–522CrossRefGoogle Scholar
  23. Murata K, Izuchi S et al (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45(8–9):1501–1508CrossRefGoogle Scholar
  24. Nair JR, Gerbaldi C et al (2008) UV-cured methacrylic membranes as novel gel–polymer electrolyte for Li-ion batteries. J Power Sources 178(2):751–757CrossRefGoogle Scholar
  25. Nair JR, Chiappone A et al (2011a) Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties. Electrochim Acta 57:104–111CrossRefGoogle Scholar
  26. Nair JR, Gerbaldi C et al (2011b) Methacrylic-based solid polymer electrolyte membranes for lithium-based batteries by a rapid UV-curing process. React Func Pol 71(4):409–416CrossRefGoogle Scholar
  27. Oza KP, Frank SG (1986) Microcrystalline cellulose stabilized emulsions. J Dispersion Sci Technol 7:543–561CrossRefGoogle Scholar
  28. Özgür Seydibeyoğlu M, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68(3–4):908–914CrossRefGoogle Scholar
  29. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430CrossRefGoogle Scholar
  30. Shin JH, Henderson WA et al (2006) Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 °C. J Power Sources 156(2):560–566CrossRefGoogle Scholar
  31. Siqueira G, Bras J et al (2008) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRefGoogle Scholar
  32. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  33. Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie 156(1):245–257CrossRefGoogle Scholar
  34. Turbak A F, Snyder F W et al. (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference. Applied polymer symposia, 37. Wiley, New York City, pp 815–827Google Scholar
  35. Vogel H (1921) The law of the relationship between viscosity of liquids and the temperature. Phys Z 22:645–649 Google Scholar
  36. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7(5):319–327CrossRefGoogle Scholar
  37. Yang J, Eitouni H, Singh M (2011) High temperature lithium cells with solid polymer electrolytes. US.Patent WO/2011/146670 PCT/US2011/037072Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Annalisa Chiappone
    • 1
    • 2
  • Jijeesh R. Nair
    • 1
  • Claudio Gerbaldi
    • 1
    • 2
  • Roberta Bongiovanni
    • 1
  • Elisa Zeno
    • 3
  1. 1.Department of Applied Science and Technology (DISAT)Politecnico di TorinoTurinItaly
  2. 2.Center for Space Human Robotics @PolitoItalian Institute of TechnologyTurinItaly
  3. 3.Centre Technique du Papier (CTP)Domaine UniversitaireGrenoble Cedex 9France

Personalised recommendations