, Volume 19, Issue 5, pp 1771–1779 | Cite as

In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton

  • Marcia da Silva Pinto
  • Cesar Augusto Sierra-Avila
  • Juan P. Hinestroza
Original Paper


A mechanism for chemical attachment and growth of a Cu-BTC Metal–Organic Framework, also known as MOF-199 or HKUST-1, onto cellulosic substrates is reported. Four different experimental procedures were attempted in order to elucidate the role of carboxylate groups on the anionic cellulose’s surface. The order of addition of Cu(OAc)2—copper acetate, BTH3, 1,3,5-benzenetricarboxylic acid and TEA—Triethylamine was found to be a critical factor for the attachment and growth of the MOF-199 crystals onto anionic cellulose. The presence of MOF-199 crystals was probed using XRD and XPS spectra and a strong chemical interaction to the carboxymethylated cellulose fibers was confirmed by intense and vigorous washing of the specimens with water, DMF and methanol. Based on the recognized ability of MOF-199 to capture gases and toxic chemicals, combined with the availability of cellulose-based fibrous materials, the described procedure provides the basis for future fabrication of functionalized fibers and active filtration media.


Cellulose Metal–organic frameworks MOF199 Filtration media 



Financial support for this work via grant HDTRA1-08-1-0023 from the Defense Threat Reduction Agency (DTRA) is acknowledged and highly appreciated. Special thanks to Mick Thomas and John Hunt (FESEM), Jonathan Shu (XPS), and Maura Weathers (XRD). This work made use of the electronic microscopy facility of the Cornell Center for Materials Research (CCMR) with support from the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) program (DMR 1120296). Special Thanks to Professor Omar Yaghi at UCLA and Dr. Hiroyasu Furukawa for introducing the authors to the wonderful world of reticular chemistry.


  1. Bordiga S, Regli L, Bonino F, Groppo E, Lamberti C, Xiao B, Wheatley PS, Morris RE, Zecchina A (2007) Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys Chem Chem Phys 9:2676–2685CrossRefGoogle Scholar
  2. Britt D, Tranchemontagne D, Yaghi OM (2008) Metal-organic frameworks with high capacity and selectivity for harmful gases. PNAS 105(33):11623–11627CrossRefGoogle Scholar
  3. Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation for carbon dioxide by a metal-organic framework replete with open metal sites. PNAS 106(49):20637–20640CrossRefGoogle Scholar
  4. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405):1148–1150CrossRefGoogle Scholar
  5. Cui XY, Gu ZY, Jiang DQ, Li Y, Wang HF, Yan XP (2009) In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81:9771–9777CrossRefGoogle Scholar
  6. Dincă M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47:6766–6779CrossRefGoogle Scholar
  7. Eddaoudi M, Kim J, Rosi N, Vodak D, Watcher J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472CrossRefGoogle Scholar
  8. Fletcher AJ, Thomas MK, Rosseinsky MJ (2005) Flexibility in metal-organic framework materials: impact on sorption properties. J Solid State Chem 178:2491–2510CrossRefGoogle Scholar
  9. Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883CrossRefGoogle Scholar
  10. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725CrossRefGoogle Scholar
  11. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500Google Scholar
  12. Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14(6):615–623Google Scholar
  13. James SL (2003) Metal-organic frameworks. Chem Soc Rev 32:276–288CrossRefGoogle Scholar
  14. Kaskel S, Rose M, Bohringer B, Jolly M, Fischer R (2011) MOF processing by electrospinning for functional textiles. Adv Eng Mater 13:356–360CrossRefGoogle Scholar
  15. Keskin S, Sholl DS (2010) Selecting metal-organic frameworks as enabling materials in mixed membranes for high efficiency natural gas purification. Energy Environ Sci 3:343–351CrossRefGoogle Scholar
  16. Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRefGoogle Scholar
  17. Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol 35:191–201CrossRefGoogle Scholar
  18. Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Zecchina A, Solari PL, Kongshaug KO, Bordiga S (2006) Local structure of framework Cu(II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chem Mater 18:1337–1346CrossRefGoogle Scholar
  19. Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679CrossRefGoogle Scholar
  20. Sun Y, Lin L, Pang C, Deng H, Peng H, Li J, He B, Liu S (2007) Hydrolysis of cotton fiber cellulose in formic acid. Energy Fuels 21(4):2386–2389Google Scholar
  21. Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64:8553–8557CrossRefGoogle Scholar
  22. Wang Z, Hauser PJ, Laine J, Rojas OJ (2011) Multilayers of low charge density polyelectrolytes on thin films of carboxymethylated and cationic cellulose. J Adhes Sci Technol 25:643–660Google Scholar
  23. Yehia H, Pisklak TJ, Ferraris JP, Balkus KJ, Musselman IH (2004) Methane facilitated transport using copper (II) biphenyl dicarboxylate-triethylenediamine poly(3-acetoxyethylthiophene) mixed matrix membranes. Polym Prepr 45:35–36Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Marcia da Silva Pinto
    • 1
  • Cesar Augusto Sierra-Avila
    • 2
  • Juan P. Hinestroza
    • 1
  1. 1.Department of Fiber Science and Apparel DesignCornell UniversityIthacaUSA
  2. 2.Departamento de QuímicaUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations