Advertisement

Cellulose

, Volume 19, Issue 5, pp 1583–1598 | Cite as

Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility

  • Katia Rodríguez
  • Paul Gatenholm
  • Scott Renneckar
Original Paper

Abstract

Electrospinning of cellulose acetate (CA) was studied in relation to factors of solvent composition, polymer concentration, and flow rate to elucidate how the processing parameters impact electrospun CA structure. Fibrous cellulose-based mats were produced from electrospinning cellulose acetate (CA, Mn = 30,000, DS = 2.45) in acetone, acetone/isopropanol (2:1), and acetone/dimethylacetamide (DMAc) (2:1) solutions. The effect of CA concentration and flow rate was evaluated in acetone/DMAc (2:1) solution. The morphology of electrospun CA mats was impacted by solvent system, polymer concentration, and solution flow rate. Fibers produced from acetone and the mixture of acetone/isopropanol (2:1) exhibited a ribbon structure, while acetone/DMAc (2:1) system produced the common cylindrical fiber shape. It was determined that the electrospinning of 17 % CA solution in acetone/DMAc (2:1, w/w) produced fibers with an average fiber diameter in the submicron range and the lowest size distribution among the solvents tested. The solution flow rate had a power law relationship of 0.26 with the CA fiber size for 17 % CA in acetone/DMAc (2:1). Solvent composition and flow rate also impacted the stability of the network structure of the electrospun fibers. Only samples from acetone/DMAc (2:1) at solution flow rates equal or higher than 1 mL/h produced fibrous meshes that were able to preserve their original network structure after deacetylation. These samples after regeneration showed no residual DMAc and exhibited no cytotoxic effects on mammalian cells.

Keywords

Cellulose Electrospinning Biomaterials Biocompatibility Flow rate 

Notes

Acknowledgments

The study was financially supported by the USDA-NIFA grant number 2010-65504-20429, Wallenberg Wood Science Center of Sweden, and the Institute of Critical Science and Applied Science of Virginia Tech. Additionally, the authors wish to thank Patricia Renneckar for assisting with the editing of the manuscript.

References

  1. Andrady AL (2007) Factors affecting nanofiber quality. In: Science and technology of polymer nanofibers. Wiley, pp 81–110. doi: 10.1002/9780470229842.ch4
  2. Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70(5):703–718. doi: 10.1016/j.compscitech.2010.01.010 CrossRefGoogle Scholar
  3. Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 7(5):1623–1629. doi: 10.1021/bm060057z CrossRefGoogle Scholar
  4. Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11(9):2498–2504. doi: 10.1021/bm100684k CrossRefGoogle Scholar
  5. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592. doi: 10.1016/s0032-3861(99)00068-3 CrossRefGoogle Scholar
  6. Freire MG, Teles ARR, Ferreira RAS, Carlos LD, Lopes-da-Silva JA, Coutinho JAP (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13(11):3173–3180. doi: 10.1039/c1gc15930e CrossRefGoogle Scholar
  7. Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48(2):378–391. doi: 10.1080/15583720802022281 CrossRefGoogle Scholar
  8. Han D, Gouma P-I (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomed Nanotechnol Biol Med 2(1):37–41. doi: 10.1016/j.nano.2006.01.002 CrossRefGoogle Scholar
  9. Han SO, Son WK, Youk JH, Lee TS, Park WH (2005) Ultrafine porous fibers electrospun from cellulose triacetate. Mater Lett 59(24–25):2998–3001. doi: 10.1016/j.matlet.2005.05.003 CrossRefGoogle Scholar
  10. Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62(4–5):759–762CrossRefGoogle Scholar
  11. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res, Part A 76A(2):431–438. doi: 10.1002/jbm.a.30570 CrossRefGoogle Scholar
  12. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. doi: 10.1016/s0266-3538(03)00178-7 CrossRefGoogle Scholar
  13. Kim C-W, Frey MW, Marquez M, Joo YL (2005) Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J Polym Sci, Part B: Polym Phys 43(13):1673–1683. doi: 10.1002/polb.20475 CrossRefGoogle Scholar
  14. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44(22):3358–3393CrossRefGoogle Scholar
  15. Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B 39(21):2598–2606. doi: 10.1002/polb.10015 CrossRefGoogle Scholar
  16. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621. doi: 10.1002/jbm.10167 CrossRefGoogle Scholar
  17. Lim YC, Johnson J, Fei Z, Wu Y, Farson DF, Lannutti JJ, Choi HW, Lee LJ (2011) Micropatterning and characterization of electrospun poly(ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 108(1):116–126. doi: 10.1002/bit.22914 CrossRefGoogle Scholar
  18. Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B 40(18):2119–2129. doi: 10.1002/polb.10261 CrossRefGoogle Scholar
  19. Liu H, Tang C (2006) Electrospinning of cellulose acetate in solvent mixture N,N-dimethylacetamide (DMAc)/acetone. Polym J 39(1):65–72CrossRefGoogle Scholar
  20. Ma Z, Ramakrishna S (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membrane Sci 319(1–2):23–28CrossRefGoogle Scholar
  21. Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membrane Sci 265(1–2):115–123. doi: 10.1016/j.memsci.2005.04.044 CrossRefGoogle Scholar
  22. McCullen SD, Miller PR, Gittard SD, Gorga RE, Pourdeyhimi B, Narayan RJ, Loboa EG (2010) In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications. Tissue Engin Part C 16(5):1095–1105. doi: 10.1089/ten.tec.2009.0753 CrossRefGoogle Scholar
  23. Miyamoto T, Takahashi S-i, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23(1):125–133CrossRefGoogle Scholar
  24. Munir MM, Suryamas AB, Iskandar F, Okuyama K (2009) Scaling law on particle-to-fiber formation during electrospinning. Polymer 50(20):4935–4943CrossRefGoogle Scholar
  25. Phachamud T, Phiriyawirut M (2011) In vitro cytotoxicity and degradability tests of gallic acid-loaded cellulose acetate electrospun fiber. Res J Pharm, Biol Chem Sci 2(3):85–98Google Scholar
  26. Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose (Dordrecht, Neth) 17(2):223–230. doi: 10.1007/s10570-009-9386-x Google Scholar
  27. Rebollar E, Cordero D, Martins A, Chiussi S, Reis RL, Neves NM, León B (2011) Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation. Appl Surf Sci 257(9):4091–4095. doi: 10.1016/j.apsusc.2010.12.002 CrossRefGoogle Scholar
  28. Rodriguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 3(3):681–689. doi: 10.1021/am100972r CrossRefGoogle Scholar
  29. Son WK, Youk JH, Lee TS, Park WH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polymer Sci Part B 42(1):5–11. doi: 10.1002/polb.10668 CrossRefGoogle Scholar
  30. Song J, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19(2):411–424CrossRefGoogle Scholar
  31. Supaphol P, Neamnark A, Taepaiboon P, Pavasant P (2012) Effect of degree of acetylation on in vitro biocompatibility of electrospun cellulose acetate-based fibrous matrices. Chiang Mai J Sci 39(2):209–223Google Scholar
  32. Suwantong O, Ruktanonchai U, Supaphol P (2010) In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. J Biomed Mater Res 94A(4):1216–1225. doi: 10.1002/jbm.a.32797 Google Scholar
  33. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922CrossRefGoogle Scholar
  34. Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575CrossRefGoogle Scholar
  35. Veleirinho B, Rei MF, Lopes-Da-Silva JA (2008) Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. J Polym Sci Part B 46(5):460–471. doi: 10.1002/polb.21380 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Katia Rodríguez
    • 1
    • 2
  • Paul Gatenholm
    • 2
    • 3
  • Scott Renneckar
    • 1
    • 4
  1. 1.Department of Materials Science and EngineeringVirginia TechBlacksburgUSA
  2. 2.Wallenberg Wood Science Center, Department of Chemical and Biological EngineeringChalmers University of TechnologyGoteborgSweden
  3. 3.School of Biomedical Engineering and SciencesVirginia TechBlacksburgUSA
  4. 4.Department of Sustainable BiomaterialsVirginia TechBlacksburgUSA

Personalised recommendations