Advertisement

Cellulose

, Volume 19, Issue 4, pp 1305–1313 | Cite as

Synthesis and characterization of aminocellulose sulfates as novel ampholytic polymers

  • Thomas Heinze
  • Taha Genco
  • Katrin Petzold-Welcke
  • Holger Wondraczek
Original Paper

Abstract

Amino cellulose sulfate (ACS); namely 6-deoxy-6-(ω-aminoethyl) amino cellulose-2,3(6)-O-sulfate (AECS) and 6-deoxy-6-(2-(bis-N′,N′-(2-aminoethyl)aminoethyl)) amino cellulose-2,3(6)-O-sulfate (BAECS) were prepared by a three step synthesis starting with the functionalization of microcrystalline cellulose with p-toluenesulfonyl (tosyl) groups (degree of substitution, DSTos between 0.55 and 1.37). Subsequently the introduction of the sulfate moieties was carried out (DSSulf between 1.09 and 1.27) and the tosyl groups at position 6 were replaced by a nucleophilic substitution reaction. As nucleophilic agents 1,2-diaminoethane and tris-(2-aminoethyl)amine were applied, yielding AECS (DSAEA values between 0.41 and 0.86) and BAECS (DSBAEA values between 0.32 and 0.74), respectively. The ACS samples were characterized by means of elemental analysis, 13C-NMR-, FT-IR-, and UV–Vis spectroscopy. Moreover, the solubility of the samples in water at different pH values and the molecular weights of the samples in aqueous solution were studied.

Keywords

Cellulose Polyampholyte Zwitterionic polysaccharide NMR spectroscopy FTIR spectroscopy 

Notes

Acknowledgments

The research leading to these work received funding from European Community’s Seventh Framework program [FP7/2007-2013] under grant agreement no. 214015. We would like to thank Dr. Wolfgang Guenther (NMR measurements) and Dr. Grit Festag (SEC measurements), Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena for their contributions.

References

  1. Berlin P, Klemm D, Tiller J, Rieseler R (2000) A novel soluble aminocellulose derivative type: its transparent film-forming properties and its efficient coupling with enzyme proteins for biosensors. Macromol Chem Phys 201:2070–2082CrossRefGoogle Scholar
  2. Berlin P, Klemm D, Jung A, Liebegott H, Rieseler R, Tiller J (2003) Film-forming aminocellulose derivatives as enzyme-compatible support matrices for biosensor developments. Cellulose 10:343–367CrossRefGoogle Scholar
  3. Bieser AM, Tiller JC (2011) Mechanistic considerations on contact-active antimicrobial surfaces with controlled functional group densities. Macromol Biosci 11:526–534CrossRefGoogle Scholar
  4. Cakara D, Kleimann J, Borkovec M (2003) Microscopic protonation equilibria of poly(amidoamine) dendrimers from macroscopic titrations. Macromolecules 36:4201–4207CrossRefGoogle Scholar
  5. Ciferri A, Kudaibergenov S (2007) Natural and synthetic polyampholytes, 1 theory and basic structures. Macromol Rapid Commun 28:1953–1968CrossRefGoogle Scholar
  6. Dobrynin AV, Colby RH, Rubinstein M (2004) Polyampholytes. J Polym Sci B: Polym Phys 42:3513–3538CrossRefGoogle Scholar
  7. Fras Zemljič L, Čakara D, Michaelis N, Heinze T, Stana Kleinschek K (2011) Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose 18:33–43CrossRefGoogle Scholar
  8. Gaweł K, Szczubiałka K, Zapotoczny S, Nowakowska M (2010) Zwitterionically modified hydroxypropylcellulose for biomedical applications. Eur Polym J 46:1475–1479CrossRefGoogle Scholar
  9. Genco T, Zemljič LF, Bračič M, Stana-Kleinschek K, Heinze T (2012) Physicochemical properties and bioactivity of a novel class of cellulosics: 6-deoxy-6-amino cellulose sulfate. Macromol Chem Phys 213:539–548CrossRefGoogle Scholar
  10. Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8 – synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353CrossRefGoogle Scholar
  11. Heinze T (1998) New ionic polymers by cellulose functionalization. Macromol Chem Phys 199:2341–2364CrossRefGoogle Scholar
  12. Heinze T, Koschella A (2005) Carboxymethyl ethers of cellulose and starch: a review. Macromol Symp 223:13–39CrossRefGoogle Scholar
  13. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRefGoogle Scholar
  14. Heinze T, Rahn K (1996) The first report on a convenient synthesis of novel reactive amphiphilic polysaccharides. Macromol Rapid Commun 17:675–681CrossRefGoogle Scholar
  15. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, HeidelbergGoogle Scholar
  16. Heinze T, Nikolajski M, Daus S, Besong TMD, Michaelis N, Berlin P, Morris GA, Rowe AJ, Harding SE (2011) Protein-like oligomerization of carbohydrates. Angew Chem Int Ed 50:8602–8604CrossRefGoogle Scholar
  17. Jung A, Berlin P (2005) New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties. Cellulose 12:67–84CrossRefGoogle Scholar
  18. Kudaibergenov SE, Ciferri A (2007) Natural and synthetic polyampholytes, 2 functions and applications. Macromol Rapid Commun 28:1969–1986CrossRefGoogle Scholar
  19. Liebert T, Heinze TJ (2001) Exploitation of reactivity and selectivity in cellulose functionalization using unconventional media for the design of products showing new superstructures. Biomacromolecules 2:1124–1132CrossRefGoogle Scholar
  20. Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4189CrossRefGoogle Scholar
  21. Nikolajski M, Wotschadlo J, Clement JH, Heinze T (2012) Amino functionalized cellulose nanoparticles: preparation, characterization and interactions with living cells. Macromol Biosci doi: 10.1002/mabi.201200040
  22. Petzold-Welcke K, Michaelis N, Heinze T (2009) Unconventional cellulose products through nucleophilic displacement reactions. Macromol Symp 280:72–85CrossRefGoogle Scholar
  23. Rahn K, Diamantoglou M, Klemm D, Berghmans H, Heinze T (1996) Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Angew Makromol Chem 238(1):143–163CrossRefGoogle Scholar
  24. Terbojevich M, Cosani A, Camilot M, Focher B (1995) Solution studies of cellulose tricarbanilates obtained in homogeneous phase. J Appl Polym Sci 55:1663–1671CrossRefGoogle Scholar
  25. Thielking H, Schmidt M (2006) Cellulose ethers. In: Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  26. Tiller J, Berlin P, Klemm D (1999) A novel efficient enzyme-immobilization reaction on NH2 polymers by means of l-ascorbic acid. Biotechnol Appl Biochem 30:155–162Google Scholar
  27. Tiller J, Klemm D, Berlin P (2001) Designed aliphatic aminocellulose derivatives as transparent and functionalized coatings for enzyme immobilization. Des Monomers Polym 4:315–328CrossRefGoogle Scholar
  28. Zheng GZ, Meshitsuka G, Ishizu A (1995) Properties of an amphoteric cellulose derivative containing anionic carboxymethyl and cationic 2-hydroxy-3- (trimethylammonio) propyl substituents. J Polym Sci B: Polym Phys 33:867–877CrossRefGoogle Scholar
  29. Zheng GZ, Meshitsuka G, Ishizu A (1996) Interactions and chain mobilities of O-carboxymethyl-O-2-(diethylamino)ethylcellulose in aqueous solutions. Polymer 37:1629–1634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Thomas Heinze
    • 1
    • 2
  • Taha Genco
    • 1
  • Katrin Petzold-Welcke
    • 1
  • Holger Wondraczek
    • 1
  1. 1.Institute of Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide ResearchFriedrich Schiller University of JenaJenaGermany
  2. 2.Laboratory of Fiber and Cellulose TechnologyÅbo Akademi UniversityÅboFinland

Personalised recommendations