Advertisement

Cellulose

, Volume 19, Issue 4, pp 1173–1187 | Cite as

Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers

  • Yiying Yue
  • Chengjun Zhou
  • Alfred D. French
  • Guan Xia
  • Guangping Han
  • Qingwen Wang
  • Qinglin Wu
Original Paper

Abstract

Stable aqueous suspensions of cellulose nano-crystals (CNCs) were fabricated from both native and mercerized cotton fibers by sulfuric acid hydrolysis, followed by high-pressure homogenization. Fourier transform infrared spectrometry and wide-angle X-ray diffraction data showed that the fibers had been transformed from cellulose I (native) to cellulose II (mercerized) crystal structure, and these polymorphs were retained in the nanocrystals, giving CNC-I and CNC-II. Transmission electron microscopy showed rod-like crystal morphology for both types of crystals under the given processing conditions with CNC-II having similar width but reduced length. Freeze-dried agglomerates of CNC-II had a much higher bulk density than that of CNC-I. Thermo-gravimetric analysis showed that CNC-II had better thermal stability. The storage moduli of CNC-II suspensions at all temperatures were substantially larger than those of CNC-I suspensions at the same concentration level. CNC-II suspensions and gels were more stable in response to temperature increases. Films of CNC and Poly(ethylene oxide) were tested. Both CNC-I/PEO and CNC-II/PEO composites showed increased tensile strength and elongation at break compared to pure PEO. However, composites with CNC-II had higher strength and elongation than composites with CNC-I.

Keywords

Cellulose nano-crystals Mercerization Acid-hydrolysis High-pressure homogenization Composites 

Notes

Acknowledgments

We are thankful for the financial support from the USDA CSREES (Award No: 2008-38814-04771) and from the National Natural Science Foundation of China (Award No: 31070505 and 31010103905). We also thank Dr. Vince Edwards of the USDA ARS Southern Regional Research Center in New Orleans, LA for providing the fabric material.

References

  1. Abidi N, Hequet E, Cabrales L (2010) Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose 17(1):153–160. doi: 10.1007/s10570-009-9364-3 CrossRefGoogle Scholar
  2. Ahn KH, Osaki K (1994) A network model for predicting the shear thickening behavior of a Poly(Vinyl Alcohol) sodium-borate aqueous-solution. J Non-Newton Fluid 55(3):215–227CrossRefGoogle Scholar
  3. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefGoogle Scholar
  4. Benchabane A, Bekkour K (2008) Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci 286(10):1173–1180. doi: 10.1007/s00396-008-1882-2 CrossRefGoogle Scholar
  5. Brownsey GJ, Ridout MJ (1985) Rheological characterization of microcrystalline cellulose dispersions: Avicel Rc 591. J Food Technol 20(2):237–243CrossRefGoogle Scholar
  6. Chang PR, Ai FJ, Chen Y, Dufresne A, Huang J (2009) Effects of starch nanocrystal-graft-polycaprolactone on mechanical properties of waterborne polyurethane-based nanocomposites. J Appl Polym Sci 111(2):619–627. doi: 10.1002/App.29060 Google Scholar
  7. Chen X, Zhang YM, Cheng LY, Wang HP (2009) Rheology of concentrated cellulose solutions in 1-butyl-3-methylimidazolium chloride. J Polym Environ 17(4):273–279. doi: 10.1007/s10924-009-0149-4 CrossRefGoogle Scholar
  8. Ciacco GT, Morgado DL, Frollini E, Possidonio S, El Seoud OA (2010) Some aspects of acetylation of untreated and mercerized sisal cellulose. J Braz Chem Soc 21(1):71–77CrossRefGoogle Scholar
  9. Das M, Chakraborty D (2006) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102(5):5050–5056. doi: 10.1002/App.25105 CrossRefGoogle Scholar
  10. Deguchi S, Kuroda K, Akiyoshi K, Lindman B, Sunamoto J (1999) Gelation of cholesterol-bearing pullulan by surfactant and its rheology. Colloid Surface A 147(1–2):203–211CrossRefGoogle Scholar
  11. Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3(3):183–188CrossRefGoogle Scholar
  12. Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I -> cellulose II. Cellulose 9(1):7–18CrossRefGoogle Scholar
  13. Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRefGoogle Scholar
  14. El-Wakil NA, Hassan ML (2008) Structural changes of regenerated cellulose dissolved in FeTNa, NaOH/thiourea, and NMMO systems. J Appl Polym Sci 109(5):2862–2871. doi: 10.1002/App.28351 CrossRefGoogle Scholar
  15. Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35(3):208–213CrossRefGoogle Scholar
  16. George J, Ramana KV, Sabapathy SN, Jagannath JH, Bawa AS (2005) Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties. Int J Biol Macromol 37(4):189–194. doi: 10.1016/j.ijbiomac.2005.10.007 CrossRefGoogle Scholar
  17. Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116(6):3212–3219. doi: 10.1002/App.31746 Google Scholar
  18. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  19. Hirota M, Tamura N, Saito T, Isogai A (2010) Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose 17(2):279–288. doi: 10.1007/s10570-009-9381-2 CrossRefGoogle Scholar
  20. Krebs FC (2008) Degradation and stability of polymer and organic solar cells. Sol Energy Mater Sol Cells 92(7):685. doi: 10.1016/j.solmat.2008.01.016 CrossRefGoogle Scholar
  21. KroonBatenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconjugate J 14(5):677–690CrossRefGoogle Scholar
  22. Kundu PP, Singh RP (2008) Effect of addition of surfactants on the rheology of gels from methylcellulose in N,N-dimethylformamide. J Appl Polym Sci 108(3):1871–1879. doi: 10.1002/App.27839 CrossRefGoogle Scholar
  23. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121(43):9940–9946CrossRefGoogle Scholar
  24. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 angstrom resolution. Biomacromolecules 2(2):410–416. doi: 10.1021/mb005612q CrossRefGoogle Scholar
  25. Liu YP, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9(6):735–739. doi: 10.1007/s12221-008-0115-0 CrossRefGoogle Scholar
  26. Liu XX, Khor S, Petinakis E, Yu L, Simon G, Dean K, Bateman S (2010) Effects of hydrophilic fillers on the thermal degradation of poly(lactic acid). Thermochim Acta 509(1–2):147–151. doi: 10.1016/j.tca.2010.06.015 CrossRefGoogle Scholar
  27. Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82(2):329–336. doi: 10.1016/j.carbpol.2010.04.073 CrossRefGoogle Scholar
  28. Mansikkamaki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose crystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12(3):233–242. doi: 10.1007/s10570-004-3132-1 CrossRefGoogle Scholar
  29. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi: 10.1021/Ja037055w CrossRefGoogle Scholar
  30. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I-beta. Biomacromolecules 9(11):3133–3140. doi: 10.1021/Bm800726v CrossRefGoogle Scholar
  31. Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd Res 340(3):417–428. doi: 10.1016/j.carres.2004.11.027 CrossRefGoogle Scholar
  32. Park JM, Kim SJ, Jang JH, Wang ZJ, Kim PG, Yoon DJ, Kim J, Hansen G, DeVries KL (2008) Actuation of electrochemical, electro-magnetic, and electro-active actuators for carbon nanofiber and Ni nanowire reinforced polymer composites. Compos Part B-Eng 39(7–8):1161–1169. doi: 10.1016/j.compositesb.2008.03.009 CrossRefGoogle Scholar
  33. Paszner L (1968) Effect of inter- and intra-crystalline swelling on cellulose degradation by gamma-rays. Svensk Papperstidning-Nordisk Cellulosa 71(22):822Google Scholar
  34. Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80(7):1013–1020CrossRefGoogle Scholar
  35. Revol JF, Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26(4):1275–1282CrossRefGoogle Scholar
  36. Sauperl O, Stana-Kleinschek K, Ribitsch V (2009) Cotton cellulose 1, 2, 3, 4 buthanetetracarboxylic acid (BTCA) crosslinking monitored by some physical-chemical methods. Text Res J 79(9):780–791. doi: 10.1177/0040517508096222 CrossRefGoogle Scholar
  37. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36(1):23–40. doi: 10.1016/j.vibspec.2004.02.003 CrossRefGoogle Scholar
  38. Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4(2):75–87CrossRefGoogle Scholar
  39. Uskokovic V (2008) Composites comprising cholesterol and carboxymethyl cellulose. Colloids Surf B 61(2):250–261. doi: 10.1016/j.colsurfb.2007.08.014 CrossRefGoogle Scholar
  40. Wang N, Ding EY, Cheng RS (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493. doi: 10.1016/j.polymer.2007.03.062 CrossRefGoogle Scholar
  41. Wu JJ, Liang SM, Dai HJ, Zhang XY, Yu XL, Cai YL, Zheng LN, Wen N, Jiang B, Xu J (2010) Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohyd Polym 79(3):677–684. doi: 10.1016/j.carbpol.2009.09.022 CrossRefGoogle Scholar
  42. Yasuda K, Saito M, Kamide K (1993) Flow birefringence and viscosity of cellulose solutions in semidilute regime. Polym Int 30(3):393–400CrossRefGoogle Scholar
  43. Zhang JG, Elder TJ, Pu YQ, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69(3):607–611. doi: 10.1016/j.carbpol.2007.01.019 CrossRefGoogle Scholar
  44. Zhou CJ, Chu R, Wu R, Wu QL (2011a) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12(7):2617–2625. doi: 10.1021/Bm200401p CrossRefGoogle Scholar
  45. Zhou CJ, Wu QL, Yue YY, Zhang QG (2011b) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interf Sci 353(1):116–123. doi: 10.1016/j.jcis.2010.09.035 CrossRefGoogle Scholar
  46. Zhou CJ, Wu QL, Zhang QG (2011c) Dynamic rheology studies of in situ polymerization process of polyacrylamide-cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289(3):247–255. doi: 10.1007/s00396-010-2342-3 CrossRefGoogle Scholar
  47. Zivanovic S, Li JJ, Davidson PM, Kit K (2007) Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules 8(5):1505–1510. doi: 10.1021/Bm061140p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yiying Yue
    • 1
  • Chengjun Zhou
    • 1
  • Alfred D. French
    • 2
  • Guan Xia
    • 1
  • Guangping Han
    • 3
  • Qingwen Wang
    • 3
  • Qinglin Wu
    • 1
  1. 1.School of Renewable Natural ResourcesLouisiana State University AgCenterBaton RougeUSA
  2. 2.USDA ARSNew OrleansUSA
  3. 3.Material Science and Engineering CollegeNortheast Forestry UniversityHarbinChina

Personalised recommendations