, Volume 19, Issue 4, pp 1065–1074 | Cite as

3-D phase diagram of HPC/H2O/H3PO4 tertiary system

  • Syang-Peng Rwei
  • Mei-Sia Lyu
Original Paper


A 3-D phase diagram of the HPC/H2O/H3PO4 tertiary system against various temperatures was established. Four distinct phases—the completely separated phase (S), the cloudy suspension phase (CS), the liquid crystalline miscible phase (LC), and the isotropically miscible phase (I)—were identified. The S phase shrank as the temperature increased, revealing that the HPC solubility increased with temperature, regardless of the LCST (lower critical solution temperature) characteristic. The addition of H3PO4 suppressed the formation of LC phase. However, as the temperature was raised sharply from 50 to 70 °C, the LC phase could only be maintained at high H3PO4 concentration region; it was a triangular shape, and the top apex of the triangle was the temperature-invariant L* point (HPC/H2O/H3PO4 38/9/53 wt%). The CS phase expanded considerably into the H2O-rich but H3PO4-poor region when the temperature continued to increase over 48 °C. The LCST points of the CS phase that contained 0 and 15 wt% of H3PO4 were 34 and 38 °C, respectively. These CS results demonstrate that H3PO4 suppresses the occurrence of LCST behavior. Additionally, the binodal curve exhibits a weak or even zero dependence of binodal temperature on the HPC concentration at HPC concentrations of less than 30 wt% in a pure water system. A hypothesis concerning the sequential desorption of water molecules was proposed to explain such behavior.


LCST behavior 3-D phase diagram HPC/H2O/H3PO4 tertiary system Liquid crystalline miscible phase (LC) Cloudy suspension phase (CS) 



The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract no. NSC_98-2221-E-027-003-MY3. Ted Knoy is appreciated for his editorial assistance.


  1. Aharoni SM (1980) Rigid backbone polymers, xiii: effects of the nature of the solvent on the lyotropic mesomorphicity of cellulose acetate. Mol Cryst Liq Cryst 56:237–241. doi: 10.1080/01406568008070497 CrossRefGoogle Scholar
  2. Aharoni SM (1981) Rigid backbone polymers. Xxiii. thermotropic and lyotropic trifluoroacetoxypropyl cellulose. J Polym Sci Part C: Polym Lett 19:495–496. doi: 10.1002/pol.1981.130191004 Google Scholar
  3. Aharoni SM (1982) Rigid backbone polymers—25. Solvent effects in phase behavior of solutions of cellulose derivatives. J Macromol Sci Phys B21:287–298. doi: 10.1080/01406568008070497 Google Scholar
  4. Boerstoel H, Maatman H, Westerink JB, Koenders BM (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42:7371–7379. doi: 10.1016/S0032-3861(01)00210-5 CrossRefGoogle Scholar
  5. Budgell DR (1989) Liquid crystalline properties of ethyl cellulose. PhD Thesis, McGill University, CanadaGoogle Scholar
  6. Carotenuto C, Grizzuti N (2006) Thermoreversible gelation of hydroxypropylcellulose aqueous solutions. Rheol Acta 45:468–473. doi: 10.1007/s00397-005-0075-x CrossRefGoogle Scholar
  7. Chang SA, Gray DG (1978) The surface tension of aqueous hydroxypropyl cellulose solutions. J Colloid Interface Sci 67:255–265. doi: 10.1016/0021-9797(78)90010-3 CrossRefGoogle Scholar
  8. Ciferri A (1991) Liquid crystallinity in polymers: Principles and fundamental properties. Wiley-VCH, New YorkGoogle Scholar
  9. Conio G, Bianchi E, Ciferri A, Tealdi A, Aden MA (1983) Mesophase formation and chain rigidity in cellulose and derivatives. 1. (hydroxypropyl)cellulose in dimethylacetamide. Macromol 16:1264–1270. doi: 10.1021/ma00242a004 CrossRefGoogle Scholar
  10. Elbro HS, Fredenslund A, Rasmussen P (1990) A new simple equation for the prediction of solvent activities in polymer solutions. Macromol 23:4707–4714. doi: 10.1021/ma00223a031 CrossRefGoogle Scholar
  11. Fischer H, Murray M, Keller A, Odell JA (1995) On the phase diagram of the system hydroxypropylcellulose-water. J Mater Sci 30:4623–4627. doi: 10.1007/BF01153071 CrossRefGoogle Scholar
  12. Flory PJ (1956) Phase equilibria in solutions of rod-like particles. Proc R Soc Lond A 234:73–89. doi: 10.1098/rspa.1956.0016 CrossRefGoogle Scholar
  13. Flory PJ (1978) Statistical thermodynamics of mixtures of rodlike particles. 6 Rods connected by flexible joints. Macromol 11:1141–1144. doi: 10.1021/ma60066a016 CrossRefGoogle Scholar
  14. Flory P (1984) Molecular theory of liquid crystals. In: Platé N (ed) Liquid crystal polymers i. Springer, Berlin, Heidelberg, pp 1–36CrossRefGoogle Scholar
  15. Flory PJ, Ronca G (1979) Theory of systems of rodiike particles: ii. Thermotropic systems with orientation-dependent interactions. Mol Cryst Liq Cryst 54:311–330. doi: 10.1080/00268947908084862 CrossRefGoogle Scholar
  16. Fortin S, Charlet G (1989) Phase diagram of aqueous solutions of (hydroxypropyl)cellulose. Macromol 22:2286–2292. doi: 10.1021/ma00195a050 CrossRefGoogle Scholar
  17. Gao J, Haidar G, Lu X, Hu Z (2001) Self-association of hydroxypropylcellulose in water. Macromol 34:2242–2247. doi: 10.1021/ma001631g CrossRefGoogle Scholar
  18. Guido S (1995) Phase behavior of aqueous solutions of hydroxypropylcellulose. Macromol 28:4530–4539. doi: 10.1021/ma00117a023 CrossRefGoogle Scholar
  19. Guido S, Grizzuti N (1995) Phase separation effects in the rheology of aqueous solutions of hydroxypropylcellulose. Rheol Acta 34:137–146. doi: 10.1007/BF00398433 CrossRefGoogle Scholar
  20. Kontogeorgis GM, Coutsikos P, Tassios D, Fredenslund A (1994) Improved models for the prediction of activity coefficients in nearly athermal mixtures: part i. Empirical modifications of free-volume models. Fluid Phase Equilib 92:35–66. doi: 10.1016/0378-3812(94)80041-3 CrossRefGoogle Scholar
  21. Lárez-V C, Crescenzi V, Ciferri A (1995) Phase separation of rigid polymers in poor solvents. 1. (hydroxypropyl)cellulose in water. Macromol 28:5280–5284. doi: 10.1021/ma00119a017 CrossRefGoogle Scholar
  22. Marrucci G, Greco F (2007) Flow behavior of liquid crystalline polymers. In: Prigogine I (ed) Advances in chemical physics, vol 86. Wiley, Hoboken, NJ, USA, pp 331–404CrossRefGoogle Scholar
  23. Marsano E, Fossati G (2000) Phase diagram of water soluble semirigid polymers as a function of chain hydrophobicity. Polymer 41:4357–4360. doi: 10.1016/S0032-3861(99)00795-8 CrossRefGoogle Scholar
  24. Matsuyama A, Tanaka F (1990) Theory of solvation-induced reentrant phase separation in polymer solutions. Phys Rev Lett 65:341–344. doi: 10.1103/PhysRevLett.65.341 CrossRefGoogle Scholar
  25. Oishi T, Prausnitz JM (1978) Estimation of solvent activities in polymer solutions using a group-contribution method. Ind Eng Chem Process Des Dev 17:333–339. doi: 10.1021/i260067a021 CrossRefGoogle Scholar
  26. Okada Y, Tanaka F (2005) Cooperative hydration, chain collapse, and flat lcst behavior in aqueous poly(n-isopropylacrylamide) solutions. Macromol 38:4465–4471. doi: 10.1021/ma0502497 CrossRefGoogle Scholar
  27. Patterson D (1969) Free volume and polymer solubility. A qualitative view. Macromol 2:672–677. doi: 10.1021/ma60012a021 CrossRefGoogle Scholar
  28. Patterson D (1982) Polymer compatibility with and without a solvent. Polym Eng Sci 22:64–73. doi: 10.1002/pen.760220204 CrossRefGoogle Scholar
  29. Robitaille L, Turcotte N, Fortin S, Charlet G (1991) Calorimetric study of aqueous solutions of (hydroxypropyl)cellulose. Macromol 24:2413–2418. doi: 10.1021/ma00009a044 CrossRefGoogle Scholar
  30. Rwei SP, Lyu MS, Wu PS, Tseng CH, Huang HW (2009) Sol/gel transition and liquid crystal transition of hpc in ionic liquid. Cellulose 16:9–17. doi: 10.1007/s10570-008-9250-4 CrossRefGoogle Scholar
  31. Vshivkov S, Rusinova E (2007) Phase liquid-crystalline transitions in hydroxypropylcellulose-ethanol and hydroxypropylcellulose-acetic acid systems under deformation. Polym Sci Ser B 49:229–231. doi: 10.1134/s1560090407090047 CrossRefGoogle Scholar
  32. Warner M, Flory PJ (1980) The phase equilibria in thermotropic liquid crystalline systems. J Chem Phys 73:6327–6332. doi: 10.1063/1.440096 CrossRefGoogle Scholar
  33. Werbowyj RS, Gray DG (1976) Liquid crystalline structure in aqueous hydroxypropyl cellulose solutions. Mol Cryst Liq Cryst 34:97–103. doi: 10.1080/15421407608083894 CrossRefGoogle Scholar
  34. Werbowyj RS, Gray DG (1980) Ordered phase formation in concentrated hydroxypropylcellulose solutions. Macromol 13:69–73. doi: 10.1021/ma60073a014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Organic and Polymeric MaterialsNational Taipei University of TechnologyTaipeiTaiwan, ROC

Personalised recommendations