, Volume 19, Issue 4, pp 1315–1326 | Cite as

Synthesis and thermoreversible gelation of diblock methylcellulose analogues via Huisgen 1,3-dipolar cycloaddition

  • Atsushi Nakagawa
  • Hiroshi Kamitakahara
  • Toshiyuki Takano
Original Paper


A novel synthetic method to link acetylated cellulose derivatives with methylated cellulose derivatives via Huisgen 1,3-dipolar cycloaddition was developed to produce 1,2,3-triazole-linked diblock copolymers consisting of hydrophilic cellobiose or low-molecular-weight cellulose and a hydrophobic 2,3,6-tri-O-methyl-cellulose. Huisgen 1,3-dipolar cycloaddition had the advantage over glycosylation reaction of being able to connect a hydrophilic block having higher molecular weight than cellobiose with a hydrophobic 2,3,6-tri-O-methyl-cellulose block. As a consequence, 2.0 wt% aqueous solutions of the 1,2,3-triazole-linked diblock methylcellulose analogues exhibited the thermoreversible gelation in water at around 25 °C as same as that of β-(1 → 4)-linked diblock methylcellulose. Differential scanning calorimetry measurements of 2.0 wt% aqueous solutions of the diblock copolymers revealed that an important structural factor for its thermoreversible gelation was not a β-(1 → 4)-glycosidic linkage between hydrophilic and hydrophobic blocks of diblock methylcellulose, but a sequence of anhydro 2,3,6-tri-O-methyl-glucopyranosyl units and that of unmodified glucopyranosyl ones.


Diblock copolymer Methylcellulose Click chemistry Triazole Thermoreversible gelation DSC 



This investigation was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (Nos. 18680009 and 21580205).


  1. Adden R, Melander C, Brinkmalm G, Gorton L, Mischnick P (2006) New approaches to the analysis of enzymatically hydrolyzed methyl cellulose. Part 1. Investigation of the influence of structural parameters on the extent of degradation. Biomacromolecules 7(5):1399–1409CrossRefGoogle Scholar
  2. Bodvik R, Dedinaite A, Karlson L, Bergström M, Bäverbäck P, Pedersen JS, Edwards K, Karlsson G, Varga I, Claesson PM (2010) Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloids Surf A Physicochem Eng Aspects 354(1–3):162–171CrossRefGoogle Scholar
  3. Chittaboina S, Xie F, Wang Q (2005) One-pot synthesis of triazole-linked glycoconjugates. Tetrahedron Lett 46(13):2331–2336CrossRefGoogle Scholar
  4. Elchinger P-H, Faugeras P-A, Boëns B, Brouillette F, Montplaisir D, Zerrouki R, Lucas R (2011) Polysaccharides: the “Click” chemistry impact. Polymers 3(4):1607–1651CrossRefGoogle Scholar
  5. Enomoto-Rogers Y, Kamitakahara H, Takano T, Nakatsubo F (2009) Cellulosic graft copolymer: poly(methyl methacrylate) with cellulose side chains. Biomacromolecules 10(8):2110–2117CrossRefGoogle Scholar
  6. Enomoto-Rogers Y, Kamitakahara H, Yoshinaga A, Takano T (2012) Comb-shaped graft copolymers with cellulose side-chains prepared via click chemistry. Carbohydr Polym 87(3):2237–2245CrossRefGoogle Scholar
  7. Fenn D, Pohl M, Heinze T (2009) Novel 3-O-propargyl cellulose as a precursor for regioselective functionalization of cellulose. React Funct Polym 69(6):347–352CrossRefGoogle Scholar
  8. Györgydeák Z, Szilágyi L, Paulsen H (1993) Synthesis, structure and reactions of glycosyl azides. J Carbohydr Chem 12(2):139–163CrossRefGoogle Scholar
  9. Hasegawa T, Numata M, Sakurai K, Shinkai S (2006) “Click chemistry” on polysaccharides: a convenient, general, and monitorable approach to develop β-1,3-glucans with various functional appendages. Carbohydr Res 341:35–40CrossRefGoogle Scholar
  10. Hirrien M, Chevillard C, Desbrières J, Axelos MAV, Rinaudo M (1998) Thermogelation of methylcelluloses: new evidence for understanding the gelation mechanism. Polymer 39(25):6251–6259CrossRefGoogle Scholar
  11. Hotha S, Kashyap S (2005) “Click Chemistry” inspired synthesis of pseudo-oligosaccharides and amino acid glycoconjugates. J Org Chem 71(1):364–367CrossRefGoogle Scholar
  12. Kamitakahara H, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 1. Model study with azidoalkyl carboxylic acid and cellobiosylamine derivative. Cellulose 12(2):209–219CrossRefGoogle Scholar
  13. Kamitakahara H, Nakatsubo F (2010) ABA- and BAB-triblock cooligomers of tri-O-methylated and unmodified cello-oligosaccharides: syntheses and structure–solubility relationship. Cellulose 17(1):173–186CrossRefGoogle Scholar
  14. Kamitakahara H, Enomoto Y, Hasegawa C, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 2. Characterization and thermal properties of cellulose triacetate-block-oligoamide-15. Cellulose 12(5):527–541CrossRefGoogle Scholar
  15. Kamitakahara H, Nakatsubo F, Klemm D (2006) Block co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides as model compounds for methylcellulose and its dissolution/gelation behavior. Cellulose 13(4):375–392CrossRefGoogle Scholar
  16. Kamitakahara H, Nakatsubo F, Klemm D (2007) New class of carbohydrate-based nonionic surfactants: diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides. Cellulose 14(5):513–528CrossRefGoogle Scholar
  17. Kamitakahara H, Yoshinaga A, Aono H, Nakatsubo F, Klemm D, Burchard W (2008) New approach to unravel the structure–property relationship of methylcellulose. Cellulose 15(6):797–801CrossRefGoogle Scholar
  18. Kamitakahara H, Murata-Hirai K, Tanaka Y (2012) Synthesis of blockwise alkylated tetrasaccharide-organic quantum dot complexes and their utilization for live cell labeling with low cytotoxicity. Cellulose 19(1):171–187CrossRefGoogle Scholar
  19. Kato T, Yokoyama M, Takahashi A (1978) Melting temperatures of thermally reversible gels IV. Methyl cellulose–water gels. Colloid Polym Sci 256(1):15–21CrossRefGoogle Scholar
  20. Koschella A, Hartlieb M, Heinze T (2011) A “click-chemistry” approach to cellulose-based hydrogels. Carbohydr Polym 86(1):154–161CrossRefGoogle Scholar
  21. Liebert T, Hänsch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27(3):208–213CrossRefGoogle Scholar
  22. Marmuse L, Nepogodiev SA, Field RA (2005) “Click chemistry” en route to pseudo-starch. Org Biomol Chem 3(12):2225–2227CrossRefGoogle Scholar
  23. Miller GL, Dean J, Blum R (1960) A study of methods for preparing oligosaccharides from cellulose. Arch Biochem Biophys 91(1):21–26CrossRefGoogle Scholar
  24. Nakagawa A, Fenn D, Koschella A, Heinze T, Kamitakahara H (2011a) Physical properties of diblock methylcellulose derivatives with regioselective functionalization patterns: first direct evidence that a sequence of 2,3,6-tri-O-methyl-glucopyranosyl units causes thermoreversible gelation of methylcellulose. J Polym Sci, Part B: Polym Phys 49(21):1539–1546CrossRefGoogle Scholar
  25. Nakagawa A, Fenn D, Koschella A, Heinze T, Kamitakahara H (2011b) Synthesis of diblock methylcellulose derivatives with regioselective functionalization patterns. J Polym Sci Part A: Polym Chem 49(23):4964–4976CrossRefGoogle Scholar
  26. Nakagawa A, Kamitakahara H, Takano T (2011c) Synthesis of blockwise alkylated (1 → 4) linked trisaccharides as surfactants: influence of configuration of anomeric position on their surface activities. Carbohydr Res 346(13):1671–1683CrossRefGoogle Scholar
  27. Negishi K, Mashiko Y, Yamashita E, Otsuka A, Hasegawa T (2011) Cellulose chemistry meets click chemistry: syntheses and properties of cellulose-based glycoclusters with high structural homogeneity. Polymers 3(1):489–508CrossRefGoogle Scholar
  28. Neto V, Granet R, Krausz P (2010) Novel class of non-ionic monocatenary and bolaform alkylglycoside surfactants. Synthesis by microwave-assisted glycosylation and olefin cross-metathesis or by ‘click-chemistry’: physicochemical studies. Tetrahedron 66(25):4633–4646CrossRefGoogle Scholar
  29. Pohl M, Schaller J, Meister F, Heinze T (2008) Selectively dendronized cellulose: synthesis and characterization. Macromol Rapid Commun 29(2):142–148CrossRefGoogle Scholar
  30. Pohl M, Michaelis N, Meister F, Heinze T (2009) Biofunctional surfaces based on dendronized cellulose. Biomacromolecules 10(2):382–389CrossRefGoogle Scholar
  31. Sarkar N, Walker LC (1995) Hydration–dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym 27(3):177–185CrossRefGoogle Scholar
  32. Schatz C, Lecommandoux S (2010) Polysaccharide-containing block copolymers: synthesis, properties and applications of an emerging family of glycoconjugates. Macromol Rapid Commun 31:1664–1684CrossRefGoogle Scholar
  33. Wilkinson BL, Bornaghi LF, Poulsen S-A, Houston TA (2006) Synthetic utility of glycosyl triazoles in carbohydrate chemistry. Tetrahedron 62(34):8115–8125CrossRefGoogle Scholar
  34. Zhang F, Bernet B, Bonnet V, Dangles O, Sarabia F, Vasella A (2008) 2-Azido-2-deoxycellulose: synthesis and 1,3-dipolar cycloaddition. Helv Chim Acta 91(4):608–617CrossRefGoogle Scholar
  35. Zhou J, Xu Y, Wang X, Qin Y, Zhang L (2008) Microstructure and aggregation behavior of methylcelluloses prepared in NaOH/urea aqueous solutions. Carbohydr Polym 74(4):901–906CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Atsushi Nakagawa
    • 1
  • Hiroshi Kamitakahara
    • 1
  • Toshiyuki Takano
    • 1
  1. 1.Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations