Skip to main content
Log in

Synthesis and thermoreversible gelation of diblock methylcellulose analogues via Huisgen 1,3-dipolar cycloaddition

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel synthetic method to link acetylated cellulose derivatives with methylated cellulose derivatives via Huisgen 1,3-dipolar cycloaddition was developed to produce 1,2,3-triazole-linked diblock copolymers consisting of hydrophilic cellobiose or low-molecular-weight cellulose and a hydrophobic 2,3,6-tri-O-methyl-cellulose. Huisgen 1,3-dipolar cycloaddition had the advantage over glycosylation reaction of being able to connect a hydrophilic block having higher molecular weight than cellobiose with a hydrophobic 2,3,6-tri-O-methyl-cellulose block. As a consequence, 2.0 wt% aqueous solutions of the 1,2,3-triazole-linked diblock methylcellulose analogues exhibited the thermoreversible gelation in water at around 25 °C as same as that of β-(1 → 4)-linked diblock methylcellulose. Differential scanning calorimetry measurements of 2.0 wt% aqueous solutions of the diblock copolymers revealed that an important structural factor for its thermoreversible gelation was not a β-(1 → 4)-glycosidic linkage between hydrophilic and hydrophobic blocks of diblock methylcellulose, but a sequence of anhydro 2,3,6-tri-O-methyl-glucopyranosyl units and that of unmodified glucopyranosyl ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adden R, Melander C, Brinkmalm G, Gorton L, Mischnick P (2006) New approaches to the analysis of enzymatically hydrolyzed methyl cellulose. Part 1. Investigation of the influence of structural parameters on the extent of degradation. Biomacromolecules 7(5):1399–1409

    Article  CAS  Google Scholar 

  • Bodvik R, Dedinaite A, Karlson L, Bergström M, Bäverbäck P, Pedersen JS, Edwards K, Karlsson G, Varga I, Claesson PM (2010) Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloids Surf A Physicochem Eng Aspects 354(1–3):162–171

    Article  CAS  Google Scholar 

  • Chittaboina S, Xie F, Wang Q (2005) One-pot synthesis of triazole-linked glycoconjugates. Tetrahedron Lett 46(13):2331–2336

    Article  CAS  Google Scholar 

  • Elchinger P-H, Faugeras P-A, Boëns B, Brouillette F, Montplaisir D, Zerrouki R, Lucas R (2011) Polysaccharides: the “Click” chemistry impact. Polymers 3(4):1607–1651

    Article  CAS  Google Scholar 

  • Enomoto-Rogers Y, Kamitakahara H, Takano T, Nakatsubo F (2009) Cellulosic graft copolymer: poly(methyl methacrylate) with cellulose side chains. Biomacromolecules 10(8):2110–2117

    Article  CAS  Google Scholar 

  • Enomoto-Rogers Y, Kamitakahara H, Yoshinaga A, Takano T (2012) Comb-shaped graft copolymers with cellulose side-chains prepared via click chemistry. Carbohydr Polym 87(3):2237–2245

    Article  CAS  Google Scholar 

  • Fenn D, Pohl M, Heinze T (2009) Novel 3-O-propargyl cellulose as a precursor for regioselective functionalization of cellulose. React Funct Polym 69(6):347–352

    Article  CAS  Google Scholar 

  • Györgydeák Z, Szilágyi L, Paulsen H (1993) Synthesis, structure and reactions of glycosyl azides. J Carbohydr Chem 12(2):139–163

    Article  Google Scholar 

  • Hasegawa T, Numata M, Sakurai K, Shinkai S (2006) “Click chemistry” on polysaccharides: a convenient, general, and monitorable approach to develop β-1,3-glucans with various functional appendages. Carbohydr Res 341:35–40

    Article  CAS  Google Scholar 

  • Hirrien M, Chevillard C, Desbrières J, Axelos MAV, Rinaudo M (1998) Thermogelation of methylcelluloses: new evidence for understanding the gelation mechanism. Polymer 39(25):6251–6259

    Article  CAS  Google Scholar 

  • Hotha S, Kashyap S (2005) “Click Chemistry” inspired synthesis of pseudo-oligosaccharides and amino acid glycoconjugates. J Org Chem 71(1):364–367

    Article  Google Scholar 

  • Kamitakahara H, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 1. Model study with azidoalkyl carboxylic acid and cellobiosylamine derivative. Cellulose 12(2):209–219

    Article  CAS  Google Scholar 

  • Kamitakahara H, Nakatsubo F (2010) ABA- and BAB-triblock cooligomers of tri-O-methylated and unmodified cello-oligosaccharides: syntheses and structure–solubility relationship. Cellulose 17(1):173–186

    Article  CAS  Google Scholar 

  • Kamitakahara H, Enomoto Y, Hasegawa C, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 2. Characterization and thermal properties of cellulose triacetate-block-oligoamide-15. Cellulose 12(5):527–541

    Article  CAS  Google Scholar 

  • Kamitakahara H, Nakatsubo F, Klemm D (2006) Block co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides as model compounds for methylcellulose and its dissolution/gelation behavior. Cellulose 13(4):375–392

    Article  CAS  Google Scholar 

  • Kamitakahara H, Nakatsubo F, Klemm D (2007) New class of carbohydrate-based nonionic surfactants: diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides. Cellulose 14(5):513–528

    Article  CAS  Google Scholar 

  • Kamitakahara H, Yoshinaga A, Aono H, Nakatsubo F, Klemm D, Burchard W (2008) New approach to unravel the structure–property relationship of methylcellulose. Cellulose 15(6):797–801

    Article  CAS  Google Scholar 

  • Kamitakahara H, Murata-Hirai K, Tanaka Y (2012) Synthesis of blockwise alkylated tetrasaccharide-organic quantum dot complexes and their utilization for live cell labeling with low cytotoxicity. Cellulose 19(1):171–187

    Article  CAS  Google Scholar 

  • Kato T, Yokoyama M, Takahashi A (1978) Melting temperatures of thermally reversible gels IV. Methyl cellulose–water gels. Colloid Polym Sci 256(1):15–21

    Article  CAS  Google Scholar 

  • Koschella A, Hartlieb M, Heinze T (2011) A “click-chemistry” approach to cellulose-based hydrogels. Carbohydr Polym 86(1):154–161

    Article  CAS  Google Scholar 

  • Liebert T, Hänsch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27(3):208–213

    Article  CAS  Google Scholar 

  • Marmuse L, Nepogodiev SA, Field RA (2005) “Click chemistry” en route to pseudo-starch. Org Biomol Chem 3(12):2225–2227

    Article  CAS  Google Scholar 

  • Miller GL, Dean J, Blum R (1960) A study of methods for preparing oligosaccharides from cellulose. Arch Biochem Biophys 91(1):21–26

    Article  CAS  Google Scholar 

  • Nakagawa A, Fenn D, Koschella A, Heinze T, Kamitakahara H (2011a) Physical properties of diblock methylcellulose derivatives with regioselective functionalization patterns: first direct evidence that a sequence of 2,3,6-tri-O-methyl-glucopyranosyl units causes thermoreversible gelation of methylcellulose. J Polym Sci, Part B: Polym Phys 49(21):1539–1546

    Article  CAS  Google Scholar 

  • Nakagawa A, Fenn D, Koschella A, Heinze T, Kamitakahara H (2011b) Synthesis of diblock methylcellulose derivatives with regioselective functionalization patterns. J Polym Sci Part A: Polym Chem 49(23):4964–4976

    Article  CAS  Google Scholar 

  • Nakagawa A, Kamitakahara H, Takano T (2011c) Synthesis of blockwise alkylated (1 → 4) linked trisaccharides as surfactants: influence of configuration of anomeric position on their surface activities. Carbohydr Res 346(13):1671–1683

    Article  CAS  Google Scholar 

  • Negishi K, Mashiko Y, Yamashita E, Otsuka A, Hasegawa T (2011) Cellulose chemistry meets click chemistry: syntheses and properties of cellulose-based glycoclusters with high structural homogeneity. Polymers 3(1):489–508

    Article  CAS  Google Scholar 

  • Neto V, Granet R, Krausz P (2010) Novel class of non-ionic monocatenary and bolaform alkylglycoside surfactants. Synthesis by microwave-assisted glycosylation and olefin cross-metathesis or by ‘click-chemistry’: physicochemical studies. Tetrahedron 66(25):4633–4646

    Article  CAS  Google Scholar 

  • Pohl M, Schaller J, Meister F, Heinze T (2008) Selectively dendronized cellulose: synthesis and characterization. Macromol Rapid Commun 29(2):142–148

    Article  CAS  Google Scholar 

  • Pohl M, Michaelis N, Meister F, Heinze T (2009) Biofunctional surfaces based on dendronized cellulose. Biomacromolecules 10(2):382–389

    Article  CAS  Google Scholar 

  • Sarkar N, Walker LC (1995) Hydration–dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym 27(3):177–185

    Article  CAS  Google Scholar 

  • Schatz C, Lecommandoux S (2010) Polysaccharide-containing block copolymers: synthesis, properties and applications of an emerging family of glycoconjugates. Macromol Rapid Commun 31:1664–1684

    Article  CAS  Google Scholar 

  • Wilkinson BL, Bornaghi LF, Poulsen S-A, Houston TA (2006) Synthetic utility of glycosyl triazoles in carbohydrate chemistry. Tetrahedron 62(34):8115–8125

    Article  CAS  Google Scholar 

  • Zhang F, Bernet B, Bonnet V, Dangles O, Sarabia F, Vasella A (2008) 2-Azido-2-deoxycellulose: synthesis and 1,3-dipolar cycloaddition. Helv Chim Acta 91(4):608–617

    Article  CAS  Google Scholar 

  • Zhou J, Xu Y, Wang X, Qin Y, Zhang L (2008) Microstructure and aggregation behavior of methylcelluloses prepared in NaOH/urea aqueous solutions. Carbohydr Polym 74(4):901–906

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (Nos. 18680009 and 21580205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kamitakahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, A., Kamitakahara, H. & Takano, T. Synthesis and thermoreversible gelation of diblock methylcellulose analogues via Huisgen 1,3-dipolar cycloaddition. Cellulose 19, 1315–1326 (2012). https://doi.org/10.1007/s10570-012-9703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9703-7

Keywords

Navigation