, Volume 19, Issue 2, pp 481–493 | Cite as

Tryptophan-based peptides grafted onto oxidized nanocellulose

  • Saïd Barazzouk
  • Claude Daneault


Oxidized nanocellulose (ONC) have been synthesized and grafted with tryptophan-based peptides of varying lengths using a two step coupling method. The ONC was first activated by N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Then, the active ester was reacted with the amino groups of the peptide forming an amide bond between ONC and peptide. Using this method, the intermolecular connection of Trp-based peptides (Trp-Ps) was avoided and uniform coupling of peptides on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The obtained products (ONC-Trp-Ps) were characterized by transmission electron microscopy and by different spectroscopic techniques.


Oxidized nanocellulose Trp-based peptides Amide bond Spectroscopic characterization 



The authors thank the Natural Sciences and Engineering Research Council of Canada for financial support of this work.


  1. Ahmed A, Adnot A, Granmaison JL, Kaliaguine S, Doucet J (1987) ESCA analysis of cellulosic materials. Cellulose Chem Technol 21:483–492Google Scholar
  2. Albani JR (2007) Fluorescence spectroscopy principles. In: Principles and applications of fluorescence spectroscopy. Blackwell, Oxford, pp 88–113Google Scholar
  3. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82CrossRefGoogle Scholar
  4. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  5. Azzam F, Heux L, Putaux JL, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659CrossRefGoogle Scholar
  6. Barazzouk S, Daneault C (2011) Spectroscopic characterization of oxidized nanocellulose grafted with fluorescent amino acids. Cellulose 18:643–653CrossRefGoogle Scholar
  7. Barry AO, Zoran Z (1990) Surface analysis by ESCA of sulfite post-treated CTMP. J Appl Polym Sci 39:31–42CrossRefGoogle Scholar
  8. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRefGoogle Scholar
  9. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRefGoogle Scholar
  10. Bulpitt P, Aeschlimann D (1999) New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47:152–169CrossRefGoogle Scholar
  11. Carr ME Jr, Hermans J (1978) Size and density of fibrin fibers from turbidity. Macromolecules 11:46–50CrossRefGoogle Scholar
  12. Chang PS, Robyt JF (1996) Oxidation of primary alcohol groups of naturally occurring polysacccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. J Carbohydr Chem 15:819–830CrossRefGoogle Scholar
  13. Chanzy H (1990) Aspects of cellulose structure. In: Kennedy JF, Philips GO, William PA (eds) Cellulose sources and exploitation. Ellis Horwood Ltd., NY, pp 3–12Google Scholar
  14. Danishefsky I, Siskovic E (1971) Conversion of carboxyl groups of mucopolysaccharides into amides of amino acid esters. Carbohydr Res 16:199–205CrossRefGoogle Scholar
  15. de Nooy AE, Besemer AC, van Bekkum H (1995) Highly selective nitrosyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 69:89–98CrossRefGoogle Scholar
  16. de Sousa Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRefGoogle Scholar
  17. Dieter-Klemm D, Schumann D, Kramer F, Hessler N, Koth D, Sultanova B (2009) Nanocellulose materials: different cellulose, different functionality. Macromol Symp 280:60–71CrossRefGoogle Scholar
  18. Dorris GM, Gray DG (1978) The surface analysis of paper and wood fibers by ESCA. Cellulose Chem Technol 12:9–23Google Scholar
  19. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRefGoogle Scholar
  20. Follain N, Montanari S, Jeacomine I, Gambarelli S, Vignon MR (2008) Coupling of amines with polyglucuronic acid: evidence for amide bond formation. Carbohydr Polym 74:333–343CrossRefGoogle Scholar
  21. Freire CSR, Silvestre AJD, Neto CP, Gandini A, Fardim P, Holmbom B (2006) Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. J Col Int Sci 301:205–209CrossRefGoogle Scholar
  22. Fujisawa S, Okita Y, Saito T, Togawa E, Isogai A (2011a) Formation of N-acylureas on the surface of TEMPO oxidizedcellulose nanofibril with carbodiimide in DMF. Cellulose 18:1191–1199CrossRefGoogle Scholar
  23. Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011b) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRefGoogle Scholar
  24. Henriksson M, Berglund L (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824 Google Scholar
  25. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–805Google Scholar
  26. Hoare DG, Koshland DE Jr (1967) A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J Biol Chem 242:2447–2453Google Scholar
  27. Hua X, Kaliaguine S, Kokta BV, Adnot A (1993) Surface analysis of explosion pulps by ESCA. Part 1. Carbon (1s) spectra and oxygen-to-carbon ratios. Wood Sci Technol 27:449–459CrossRefGoogle Scholar
  28. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164CrossRefGoogle Scholar
  29. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466Google Scholar
  30. Jansen RJJ, Van Bekkum H (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33:1021–1027CrossRefGoogle Scholar
  31. Jiang K, Schadler LS, Siegel RW, Zhang X, Zhang H, Terrones M (2004) Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J Mater Chem 14:37–39CrossRefGoogle Scholar
  32. Johansson LS, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36:1018–1022CrossRefGoogle Scholar
  33. Kamdem DP, Riedl B, Adnot A, Kaliaguine S (1991) ESCA spectroscopy of poly(methylmethacrylate) grafted onto wood fibers. J Appl Polym Sci 43:1901–1912CrossRefGoogle Scholar
  34. Kamdem DP, Zhang J, Adnot A (2001) Identification of cupric and cuprous copper in copper naphthenate-treated wood by X-ray photoelectron spectroscopy. Holzforschung 55:16–20Google Scholar
  35. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  36. Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580CrossRefGoogle Scholar
  37. Liu FPP, Rials TG, Simonsen J (1998) Relationship of wood surface energy to surface composition. Langmuir 14:536–541CrossRefGoogle Scholar
  38. Łojewska J, Miśkowiec P, Łojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Deg Stab 88:512–520CrossRefGoogle Scholar
  39. Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci and Technol 35:191–201CrossRefGoogle Scholar
  40. Nzokou P, Kamdem DP (2005) X-ray photoelectron spectroscopy study of red oak-(Quercus rubra), black cherry—(Prunus serotina) and red pine—(Pinus resinosa) extracted wood surfaces. Surf Interf Anal 37:689–694CrossRefGoogle Scholar
  41. Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428CrossRefGoogle Scholar
  42. Olmstead JA, Gray DG (1997) Fluorescence spectroscopy of cellulose, lignin and mechanical pulps: a review. J Pulp Pap Sci 23:J571–J581Google Scholar
  43. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRefGoogle Scholar
  44. Rzayev J, Hillmyer MA (2005) Nanochannel array plastics with tailored surface chemistry. J Am Chem Soc 127:13373–13379CrossRefGoogle Scholar
  45. Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190CrossRefGoogle Scholar
  46. Saito T, Shibata I, Isogai A, Suguri N, Sumikwa N (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr Polym 61:414–419CrossRefGoogle Scholar
  47. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691CrossRefGoogle Scholar
  48. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRefGoogle Scholar
  49. Sugiyama J, Chanzy H, Revol JF (1994) On the polarity of cellulose in the cell wall of Valonia. Planta 193:260–265CrossRefGoogle Scholar
  50. Sun D, Zhou L, Wu Q, Yang S (2007) Preliminary research on structure and properties of nano-cellulose. J Wuhan Univ Tech Mater Sci Ed 22:677–680CrossRefGoogle Scholar
  51. Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterization of polyglucuronans. Cellulose 7:177–188CrossRefGoogle Scholar
  52. Toner SD, Plitt KF (1962) Spectrofluorometric studies of degraded cotton cellulose. Tappi J 45:681–688Google Scholar
  53. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827Google Scholar
  54. Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69:607–611CrossRefGoogle Scholar
  55. Zubavichus Y, Zharnikov M, Shaporenko A, Fuchs O, Weinhardt L, Heske C, Umbach E, Denlinger JD, Grunze M (2004) Soft X-ray induced decomposition of phenylalanine and tyrosine: a comparative study. J Phys Chem A 108:4557–4565CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Centre de Recherche sur les Matériaux LignocellulosiquesUniversité du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations