Advertisement

Cellulose

, Volume 19, Issue 1, pp 161–169 | Cite as

Structure and solution properties of cyanoethyl celluloses synthesized in LiOH/urea aqueous solution

  • Qian Li
  • Pingjian Wu
  • Jinping Zhou
  • Lina Zhang
Article

Abstract

Cyanoethyl celluloses (CECs) with different degree of substitution (DS) were synthesized by homogeneous reaction of cellulose (cotton linter pulp and absorbent cotton) with acrylonitrile (AN) in LiOH/urea aqueous solutions. The reaction showed quick reactivity and high transfer efficiency of etherification agent. The DS values of CECs were controlled by varying the molar ratio of AN to anhydroglucose unit (AGU) and the cellulose concentration. The DS values of the CEC-1–CEC-10 increased from 0.27 to 1.78 with increasing molar ratio of AN to AGU from 0.5:1 to 9:1. While the CEC-11–CEC-21 with DS values of 0.26–1.81 could be obtained by adjusting the molar ratio from 1:1 to 27:1. The relative reactivity of hydroxyl groups is in the order of C-6 > C-2 > C-3. The DS values of the water-soluble derivatives are in the range of 0.47–1.01. As the DS values increase to 1.37, CEC samples can not be dissolved in water or dilute alkali solution, but have good solubility in organic solvents, such as DMSO, DMF and pyridine. The dilute solution properties and molecular parameters of the CEC samples were studied by static light scattering and dynamic light scattering. The results indicated that the water-soluble samples could form a small number of aggregates spontaneously in 0.9 wt% NaCl aqueous solution, while the water-insoluble samples showed extended stiff chains in 0.5% LiCl–DMAc.

Keywords

Cyanoethyl cellulose Homogeneous synthesis Degree of substitution Solubility Solution properties 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (50973085), the National Basic Research Program of China (973 Program, 2010CB732203) and the Fundamental Research Funds for the Central Universities (2081005).

References

  1. Brown W, Wiskstön R (1965) A viscosity-molecular weight relationship for cellulose in cadoxen and a hydrodynamic interpretation. Eur Polym J 1:1–10. doi: 10.1016/0014-3057(65)90041-8 CrossRefGoogle Scholar
  2. Burchard W (1999) Solution properties of branched macromolecules. Adv Polym Sci 143:113–194. doi: 10.1007/3-540-49780-3_3 CrossRefGoogle Scholar
  3. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548. doi: 10.1002/mabi.200400222 CrossRefGoogle Scholar
  4. Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous System. J Polym Sci Pol Phys 44:3093–3101. doi: 10.1002/polb.20938 CrossRefGoogle Scholar
  5. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825. doi: 10.1002/adma.200601521 CrossRefGoogle Scholar
  6. Chatterjee PK, Conrad CM (1966) Investigation by infrared absorption of the by-products of the cyanoethylation of cotton cellulose. J Polym Sci Part A-1 4:233–243. doi:  10.1002/pol.1966.150040115
  7. Compton J, Martin WH, Word BH, Barber RP (1955) Pilot plant production and properties of cyanoethylated cotton. Text Res J 25:58–75. doi: 10.1177/004051755502500108 CrossRefGoogle Scholar
  8. Greathouse LH, Janssen HJ, Berard WN, Haydel CH (1956) Cyanoethylation of cotton fabric. Ind Eng Chem 48:1263–1267. doi: 10.1021/ie50560a025 CrossRefGoogle Scholar
  9. Hassan LM, EL-Wakil AN, Sefain ZM (2001) Thermoplasticization of bagasse by cyanoethylation. J Appl Polym Sci 79:1965–1978. doi: 10.1002/1097-4628(20010314) CrossRefGoogle Scholar
  10. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762. doi: 10.1016/S0079-6700(01)00022-3 CrossRefGoogle Scholar
  11. Johnson DL (1966) Compounds dissolved in cyclic amine oxides. US 3447939Google Scholar
  12. Kim J, Yun S (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206. doi: 10.1021/ma060261e CrossRefGoogle Scholar
  13. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 2, functionalization of cellulose. Wiley-VCH, Weinheim, pp 161–164Google Scholar
  14. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  15. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66. doi: 10.1007/s10570-007-9160-x CrossRefGoogle Scholar
  16. Liebert T, Heinze T (2005) Tailored cellulose esters: synthesis and structure determination. Biomacromolecules 6:333–340. doi: 10.1021/bm049532o CrossRefGoogle Scholar
  17. Liu T, Rulkens R, Wegner G, Chu B (1998) Laser light scattering study of a rigid-rod polyelectrolyte. Macromolecules 31:6119–6128. doi: 10.1021/ma980423 CrossRefGoogle Scholar
  18. MacGregor JH (1951) The reaction of acrylonitrile with macromolecular hydroxy substances. I-A general survey of the reaction. J Soc Dyers Colour 67:66–73. doi: 10.1111/j.1478-4408.1951.tb02704.x CrossRefGoogle Scholar
  19. Morooka T, Norimoto M, Yamada T (1986) Cyanoethylated cellulose prepared by homogeneous reaction in paraformaldehyde-DMSO system. J Appl Polym Sci 32:3575–3587. doi: 10.1002/app.1986.070320217 CrossRefGoogle Scholar
  20. Nada AMA, Seoudi R (2006) Molecular structure, thermal analysis and electrical properties of cyanoethyl and carbamoyl ethyl bagasse raw materials. J Mol Struc 797:111–120. doi: 10.1016/j.molstruc.2006.03.020 CrossRefGoogle Scholar
  21. Nagel CV, Koschella A, Voiges K, Mischnick P, Heinze T (2010) Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O. Eur Polym J 46:1726–1735. doi: 10.1016/j.eurpolymj.2010.05.009 CrossRefGoogle Scholar
  22. Nakayama E, Azuma J (1998) Substituent distribution of cyanoethyl cellulose. Cellulose 5:175–185. doi: 10.1023/A:1009276916877 CrossRefGoogle Scholar
  23. Philipp B, Lukanoff B, Schleicher H, Wagenknecht WZ (1986) Homogene umsetzung an cellulose in organischen lösemittelsystemen. Chem 26:50–58. doi: 10.1002/zfch.19860260203 Google Scholar
  24. Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787. doi: 10.1007/s10570-008-9230-8 CrossRefGoogle Scholar
  25. Qi H, Liebert T, Meister F, Heinze T (2009) Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym 69:779–784. doi: 10.1016/j.reactfunctpolym.2009.06.007 CrossRefGoogle Scholar
  26. Saha AK, Das S, Basak RK, Bhatta D, Mitra BC (2000) Improvement of functional properties of jute-based composite by acrylonitrile pretreatment. J Appl Polym Sci 78:495–506. doi: 10.1002/1097-4628(20001017) CrossRefGoogle Scholar
  27. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymer 2:728–765. doi: 10.3390/polym2040728 CrossRefGoogle Scholar
  28. Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008a) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264. doi: 10.1021/bm800429a CrossRefGoogle Scholar
  29. Song Y, Zhou J, Zhang L, Wu X (2008b) Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydr Polym 73:18–25. doi: 10.1016/j.carbpol.2007.10.018 CrossRefGoogle Scholar
  30. Takahashi S, Fujimoto T, Barua BM, Miyamoto T (1986) 13C NMR spectral studies on the distribution of substituents in some cellulose derivatives. J Polym Sci Part A Polym Chem 24:2981–2993. doi: 10.1002/pola.1986.080241125 CrossRefGoogle Scholar
  31. Volkert B, Wagenknecht W, Mai M (2010) Structure-property relationship of cellulose ethers—influence of the synthetic pathway on cyanoethylation. In: Liebert T et al. (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS Symposium Series; American Chemical Society, Washington, p 319. doi: 10.1021/bk-2010-1033
  32. Yamawaki Y, Morita M, Sakata I (1990) Mechanical and dielectric properties of cyanoethylated wood. J Appl Polym Sci 40:1757–1769. doi: 10.1002/app.1990.070400929 CrossRefGoogle Scholar
  33. Zadorecki P, Hjertberg T, Arwidsson M (1987) Characterization of cellulose ether by 13C NMR, 2 structural determination. Macromol Chem 188:513–525. doi: 10.1002/macp.1987.021880306 CrossRefGoogle Scholar
  34. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277. doi: 10.1021/ma0505676 CrossRefGoogle Scholar
  35. Zhou J, Zhang L, Deng Q, Wu X (2004) Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. J Polym Sci Part A Polym Chem 42:5911–5920. doi: 10.1002/pola.20431 CrossRefGoogle Scholar
  36. Zhou J, Qin Y, Liu S, Zhang L (2006) Homogenous synthesis of hydroxyethylcellulose in NaOH/urea aqueous solution. Macromol Biosci 6:84–89. doi: 10.1002/mabi.200500148 CrossRefGoogle Scholar
  37. Zhou J, Xu Y, Wang X, Qin Y, Zhang L (2008) Microstructure and aggregation behavior of methylcelluloses prepared in NaOH/urea aqueous solutions. Carbohydr Polym 94:901–906. doi: 10.1016/j.carbpol.2008.05.016 CrossRefGoogle Scholar
  38. Zhou J, Li Q, Song Y, Zhang L, Lin X (2010) A facile method for the homogeneous synthesis of cyanoethyl cellulose in NaOH/urea aqueous solution. Polym Chem 1:1662–1668. doi: 10.1039/c0py00163e CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Qian Li
    • 1
  • Pingjian Wu
    • 1
  • Jinping Zhou
    • 1
  • Lina Zhang
    • 1
  1. 1.Department of ChemistryWuhan UniversityWuhanChina

Personalised recommendations