, Volume 18, Issue 6, pp 1509–1519 | Cite as

Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose

  • Carlos Driemeier
  • Maria T. B. Pimenta
  • George J. M. Rocha
  • Marcelo M. Oliveira
  • Danilo B. Mello
  • Priscila Maziero
  • Adilson R. Gonçalves


This work investigates the evolution of cellulose crystals from sugarcane lignocellulose (bagasse and leaves) submitted to prehydrolysis (hydrothermal, dilute acid, or steam explosion) and soda delignifications. Raw and treated materials are characterized by X-ray diffraction with modeling of area-detector patterns. Three treatment effects are correlated: increase in cellulose content, quantified by strong acid hydrolysis; increase in average cellulose crystallite width, inferred from sharper 200 diffraction peaks; and decrease in crystallite distortion, evidenced by d 200-spacing approaching reference values. Crystal contents measured according to recent developments (in Driemeier and Calligaris, J Appl Cryst 44:184–192, 2011) are compared to cellulose contents. Limitations for this comparison are discussed. Results are consistent with minimum non-crystalline cellulose in raw lignocellulose, and with partial cellulose decrystallization or more defective crystallites in treated materials.


Cellulose Crystallinity Diffraction Bagasse Pretreatment Hydrothermal 



The authors thank Prof. A. A. S. Curvelo for critical reading of the manuscript. Research supported by LNLS—Brazilian Synchrotron Light Laboratory and LNBio—Brazilian Biosciences National Laboratory (project GAR-6293) and by FAPESP (projects 2010/05523-3 and 2010/08691-4).


  1. Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. J Wood Sci 51:334–338CrossRefGoogle Scholar
  2. Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537Google Scholar
  3. Andersson S, Wikberg H, Pesonen E, Maunu SL, Serimaa R (2004) Studies of crystallinity of scots pine and Norway spruce cellulose. Trees Struct Funct 18:346–353CrossRefGoogle Scholar
  4. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefGoogle Scholar
  5. Bonarski JT, Olek W (2011) Application of the crystalline volume fraction for characterizing the ultrastructural organization of wood. Cellulose 18:223–235CrossRefGoogle Scholar
  6. Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633CrossRefGoogle Scholar
  7. Brett C, Waldron K (1996) Physiology and biochemistry of plant cell walls. Chapman & Hall, LondonGoogle Scholar
  8. Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476CrossRefGoogle Scholar
  9. Cortez LAB (2010) Sugarcane bioethanol—R&D for productivity and sustainability, Blucher, São PauloGoogle Scholar
  10. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861CrossRefGoogle Scholar
  11. da Silva AM (2004) Caracterização da parede celular de Saccharum officinarum L. (cana-de-açucar) e Brachiaria decumbens Stapf (braquiaria). Ph.D., thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  12. Debzi EM, Chanzy H, Sugiyama J, Tekely P, Excoffier G (1991) The Iα-Iβ transformation of highly crystalline cellulose by annealing in various media. Macromolecules 24:6816–6822CrossRefGoogle Scholar
  13. Delhez R, de Keijser TH, Mittemeijer EJ (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius Z Anal Chem 312:1–16CrossRefGoogle Scholar
  14. Delhez R, de Keijser TH, Langford JI, Louër D, Mittemeijer EJ, Sonneveld EJ (1993) Crystal Imperfection broadening and peak shape in the Rietveld Method. In: Young RA (ed) The Rietveld method. Oxford University Press, New York, pp 132–166Google Scholar
  15. Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44:184–192CrossRefGoogle Scholar
  16. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRefGoogle Scholar
  17. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reations. Walter de Gruyter, BerlinGoogle Scholar
  18. Fink HP, Hofmann D, Philipp B (1995) Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2:51–70Google Scholar
  19. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff 57:191–202CrossRefGoogle Scholar
  20. Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova 32:1–4CrossRefGoogle Scholar
  21. Hermans PH, Weidinger A (1948) Quantitative x-ray investigations on the crystallinity of cellulose fibers—a background analysis. J Appl Phys 19:491–506CrossRefGoogle Scholar
  22. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRefGoogle Scholar
  23. Horii F, Yamamoto H, Kitamaru R, Tanahashi M, Higuchi T (1987) Transformation of native cellulose crystals induced by saturated steam at high-temperatures. Macromolecules 20:2946–2949CrossRefGoogle Scholar
  24. Hosemann R, Hindeleh AM (1995) Structure of crystalline and paracrystalline condensed matter. J Macromol Sci Part B Phys 34:327–356CrossRefGoogle Scholar
  25. Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11:2300–2305CrossRefGoogle Scholar
  26. Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782CrossRefGoogle Scholar
  27. Kocherbitov V, Ulvenlund S, Kober M, Jarring K, Arnebrant T (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112:3728–3734CrossRefGoogle Scholar
  28. Leppäanen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015CrossRefGoogle Scholar
  29. Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316CrossRefGoogle Scholar
  30. Lutterotti L, Matthies S, Wenk H-R, Schultz AJ, Richardson J (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81:594–600CrossRefGoogle Scholar
  31. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152CrossRefGoogle Scholar
  32. Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442CrossRefGoogle Scholar
  33. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  34. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using C-13 NMR signal strengths. Solid State Nucl Magn Reson 15:21–29CrossRefGoogle Scholar
  35. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  36. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003a) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefGoogle Scholar
  37. Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003b) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017CrossRefGoogle Scholar
  38. Okano T, Koyanagi A (1986) Structural variation of native cellulose related to its source. Biopolymers 25:851–861CrossRefGoogle Scholar
  39. Paakkari T, Blomberg M, Serimaa R, Järvinen M (1988) A texture correction for quantitative X-ray powder diffraction analysis of cellulose. J Appl Cryst 21:393–397CrossRefGoogle Scholar
  40. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRefGoogle Scholar
  41. Preston RD (1979) Polysaccharide conformation and cell-wall function. Ann Rev Plant Physiol 30:55–78CrossRefGoogle Scholar
  42. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRefGoogle Scholar
  43. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71CrossRefGoogle Scholar
  44. Rocha GJM, Silva FT, Araújo GT, Curvelo AAS (1997) A fast and accurate method for determination of cellulose and polyoses by HPLC. In: Brazilian symposium on the chemistry of lignin and other wood components, CuritibaGoogle Scholar
  45. Roe R-J (2000) Methods of X-ray and neutron scattering in polymer science. Oxford University Press, New YorkGoogle Scholar
  46. Soccol CR, Vandenberghe LPD, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitao V, Gottschalk LMF, Ferrara MA, Bom EPD, de Moraes LMP, Araujo JD (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825CrossRefGoogle Scholar
  47. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRefGoogle Scholar
  48. Sturcova A, His I, Apperley D, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339CrossRefGoogle Scholar
  49. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576CrossRefGoogle Scholar
  50. Warren BE (1990) X-ray diffraction. Dover Publications, New YorkGoogle Scholar
  51. Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8:491–504CrossRefGoogle Scholar
  52. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS C-13 NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  53. Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530CrossRefGoogle Scholar
  54. Zabler S, Paris O, Burgert I, Fratzl P (2010) Moisture changes in the plant cell wall force cellulose crystallites to deform. J Struc Biol 171:133–141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Carlos Driemeier
    • 1
  • Maria T. B. Pimenta
    • 1
  • George J. M. Rocha
    • 1
    • 2
  • Marcelo M. Oliveira
    • 1
  • Danilo B. Mello
    • 1
  • Priscila Maziero
    • 2
  • Adilson R. Gonçalves
    • 2
  1. 1.Laboratório Nacional de Ciência e Tecnologia do BioetanolCTBECampinasBrazil
  2. 2.Departamento de BiotecnologiaEscola de Engenharia de Lorena, USPLorenaBrazil

Personalised recommendations