, Volume 18, Issue 6, pp 1455–1467 | Cite as

Polypyrrole (PPy) chemical synthesis with xylan in aqueous medium and production of highly conducting PPy/nanofibrillated cellulose films and coatings

  • Claudia Sasso
  • Nicolas Bruyant
  • Davide Beneventi
  • Jerôme Faure-Vincent
  • Elisa Zeno
  • Michel Petit-Conil
  • Didier Chaussy
  • Mohamed Naceur Belgacem


Polypyrrole was chemically synthesised by using, for the first time, Birchwood xylan as additive, and ammonium peroxydisulfate (APS) as oxidant. The impact of additive concentration, polymerisation time and reagents concentration on PPy conductivity was studied. It was shown that, once fixed the pyrrole (Py)/APS and Py/xylan optimal ratios, the best conductivities (26 S/cm) were obtained for short polymerisation times (30 min) and increased reactants concentration. Morphological analysis of PPy particles, Py depletion kinetics and oxido-reduction potential measurements of the solutions provided interpretation elements on the impact of the polymerisation time on PPy pellet conductivity. Furthermore, optimised PPy particles obtained with xylan (PPyx) were mixed with nanofibrillated cellulose (NFC) in order to obtain freestanding films. Their electrical and handling performances were evaluated at increasing PPy weight fraction in the samples. The conductivity mechanism of the most conductive sample (in comparison with a low performing sample) was investigated by measuring the conductivity as a function of temperature (4–350 K) and two transport regimes were identified. Selected formulations were finally used to produce conducting PPy/NFC coatings on non-absorbent (glass) and absorbent (copy paper) substrates. The impact of NFC in the percolation of PPy particles, then in the coating conductivity, was investigated.


Polypyrrole Xylan Nanofibrillated cellulose Conductivity Composite film 



This work was supported by a CIFRE grant from the French “Association Nationale de la Recherche et de la Technologie”, CTP and CTPi members and by the National Research Agency through the Myosotis project (ANR-08-NANO-012-01).


  1. Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5(2):175–196CrossRefGoogle Scholar
  2. Amaike M, Yamamoto H (2006) Preparation of polypyrrole by emulsion polymerization using hydroxypropyl cellulose. Polym J 38(7):703–709CrossRefGoogle Scholar
  3. Amash A, Zugenmaier P (1998) Study on cellulose and xylan filled polypropylene composites. Polym Bull 40(2–3):251–258CrossRefGoogle Scholar
  4. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574CrossRefGoogle Scholar
  5. Chen X, Issi J, Devaux J, Billaud D (1995) The conducting behavior and stability of conducting polymer composites. Polym Eng Sci 35(8):642–647CrossRefGoogle Scholar
  6. Demir I, Serhat Baspinar M, Orhan M (2005) Utilization of kraft pulp production residues in clay brick production. Build Environ 40(11):1533–1537Google Scholar
  7. Denneulin A, Blayo A, Bras J, Neuman C (2008) PEDOT: PSS coating on specialty papers: process optimization and effects of surface properties on electrical performances. Progress Org Coat 63(1):87–91CrossRefGoogle Scholar
  8. Ebringerová A, Sroková I, Talába P, Kačuráková M, Hromádková Z (1998) Amphiphilic beechwood glucuronoxylan derivatives. J Appl Polym Sci 67(9):1523–1530CrossRefGoogle Scholar
  9. Eder F, Klauk H, Halik M, Zschieschang U, Schmid G, Dehm C (2004) Organic electronics on paper. Appl Phys Lett 84(14):2673–2675CrossRefGoogle Scholar
  10. Fournier J, Boiteux G, Seytre G, Marichy G (1997) Percolation network of polypyrrole in conducting polymer composites. Synth Met 84(1–3):839–840CrossRefGoogle Scholar
  11. Fuhrmann A, Krogerus B (2009) Xylan from bleached hardwood pulp-new opportunities. TAPPI engineering, pulping, environmental conference, Memphis, TN, United States, 11–14 OctGoogle Scholar
  12. Gabrielii I, Gatenholm P (1998) Preparation and properties of hydrogels based on hemicellulose. J Appl Polym Sci 69(8):1661–1667CrossRefGoogle Scholar
  13. Glasser W, Kaar WE, Jain RK, Sealey JE (2000) Isolation options for non-cellulosic heteropolysaccharides (HetPS). Cellulose 7(3):299–317CrossRefGoogle Scholar
  14. Jain RK, Sjöstedt M, Glasser WG (2000) Thermoplastic xylan derivatives with propylene oxide. Cellulose 7(4):319–336CrossRefGoogle Scholar
  15. Kudoh Y, Akami K, Matsuya Y (1998) Properties of chemically prepared polypyrrole with an aqueous solution containing Fe2(SO4)3, a sulfonic surfactant and a phenol derivative. Synth Met 95(3):191–196CrossRefGoogle Scholar
  16. Kuwabata S, Nakamura J, Yoneyama H (1990) Dependence of conductivity of polypyrrole film doped with p-phenol sulfonate on solution pH. J Electrochem Soc 137(7):1788–1792CrossRefGoogle Scholar
  17. Lei J, Cai Z, Martin CR (1992) Effect of reagent concentrations used to synthesize polypyrrole on the chemical characteristics and optical and electronic properties of the resulting polymer. Synth Met 46(1):53–69CrossRefGoogle Scholar
  18. Lowys M-P, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15(1):25–32Google Scholar
  19. Mahmud H, Kassim A, Zainal Z, Mat Yunus WM (2005) Electrochemical formation of polypyrrole-carboxymethylcellulose conducting polymer composite films. J Mater Sci Technol 21(5):661–665Google Scholar
  20. Mahro B, Timm M (2007) Potential of biowaste from the food industry as a biomass resource. Eng Life Sci 7(5):457–468CrossRefGoogle Scholar
  21. Mott NF, Davis EA (1971) Electronic processes in non-crystalline materials. Clarendon Press, OxfordGoogle Scholar
  22. Moure A, Gullón P, Domínguez H, Parajó JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41(9):1913–1923CrossRefGoogle Scholar
  23. Nalwa HS (1997) Handbook of organic conductive molecules and polymers (chapter 2), vol 4. Wiley, New YorkGoogle Scholar
  24. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mat 20(10):1849–1852CrossRefGoogle Scholar
  25. Novák P (1992) Limitations of polypyrrole synthesis in water and their causes. Electrochim Acta 37(7):1227–1230CrossRefGoogle Scholar
  26. Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182CrossRefGoogle Scholar
  27. Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Tech 69(11–12):1958–1961CrossRefGoogle Scholar
  28. Omastová M, Trchová M, Kovárová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138(3):447–455CrossRefGoogle Scholar
  29. Omastová M, Trchová M, Pionteck J, Prokes J, Stejskal J (2004) Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis (2-ethylhexyl) sulfosuccinate. Synth Met 143(2):153–161CrossRefGoogle Scholar
  30. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high pressure homogeneization for nanoscale cellulose fibrils and strong gels. Biomacromol 8(6):1934–1941CrossRefGoogle Scholar
  31. Polprasert C (2007) Organic waste recycling: technology and management. IWA Publishing, LondonGoogle Scholar
  32. Puls J, Schröder N, Stein A, Janzon R, Saake B (2005) Xylans from oat spelts and birch kraft pulp. Macromol Symp 232(1):85–92CrossRefGoogle Scholar
  33. Rußler A, Sakakibara K, Rosenau T (2011) Cellulose as matrix component of conducting films. Cellulose 18(4):937–944CrossRefGoogle Scholar
  34. Sasso C, Fenoll M, Stephan O, Beneventi D (2008) Use of wood derivatives as doping/dispersing agents in the preparation of polypyrrole aqueous dispersions. Bioresources 3(4):1187–1195Google Scholar
  35. Sasso C, Beneventi D, Zeno E, Chaussy D, Petit-Conil M, Belgacem MN, Tapin-Lingua S (2010) Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol Mat Eng 295(10):934–941CrossRefGoogle Scholar
  36. Sasso C, Beneventi D, Zeno E, Chaussy D, Petit-Conil M, Belgacem MN (2011) Carboxymethylcellulose: a conductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium. Synth Met 161(5–6):397–403CrossRefGoogle Scholar
  37. Saxena A, Elder TJ, Pan S, Ragauskas AJ (2009) Novel nanocellulosic xylan composite film. Compos B Eng 40(8):727–730CrossRefGoogle Scholar
  38. Schwikal K, Heinze T, Ebringerová A, Petzold K (2005) Cationic xylan derivatives with high degree of functionalization. Macromol Symp 232(1):49–56CrossRefGoogle Scholar
  39. Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotech 66(4):352–355CrossRefGoogle Scholar
  40. Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer Series in Solid-State Sciences, HeidelbergGoogle Scholar
  41. Sixta H (2011) Progress and challenges in the selective isolation of xylan from hardwood. 241st ACS National Meeting & Exposition, Anaheim, CA, United States, 27–31 MarchGoogle Scholar
  42. Thiéblemont J, Gabelle J, Planche M (1994) Polypyrrole overoxidation during its chemical synthesis. Synth Met 66(3):243–247CrossRefGoogle Scholar
  43. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Tech 1(1):45–70CrossRefGoogle Scholar
  44. Wallberg O, Linde M, Jönsson A (2006) Extraction of lignin and hemicelluloses from kraft black liquor. Desalination 199(1–3):413–414CrossRefGoogle Scholar
  45. Winther-Jensen B, Clark N, Subramanian P, Helmer R, Ashraf S, Wallace G, Spiccia L, MacFarlane DJ (2007) Application of polypyrrole to flexible substrates. J Appl Polym Sci 104(6):3938–3947CrossRefGoogle Scholar
  46. Yang C, Liu P (2009) Water-dispersed conductive polypyrroles doped with lignosulfonate and the weak temperature dependence of electrical conductivity. Ind Eng Chem Res 48(21):9498–9503CrossRefGoogle Scholar
  47. Yang R, Xu S, Wang Z, Yang W (2005) Aqueous extraction of corncob xylan and production of xylooligosaccharides. Food Sci Tech 38(6):677–682Google Scholar
  48. Yeetsorn R, Fowler M, Tzoganakis C, Yuhua W, Taylor M (2008) Polypropylene composites for polymer electrolyte membrane fuel cell bipolar plates. Macromol Symp 264(1):34–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Claudia Sasso
    • 1
    • 2
  • Nicolas Bruyant
    • 3
  • Davide Beneventi
    • 1
  • Jerôme Faure-Vincent
    • 3
  • Elisa Zeno
    • 2
  • Michel Petit-Conil
    • 2
  • Didier Chaussy
    • 1
  • Mohamed Naceur Belgacem
    • 1
  1. 1.LGP2, UMR 5518 CNRS-Grenoble-INP-CTPSt. Martin d’HèresFrance
  2. 2.Centre Technique du PapierGrenoble CEDEX 9France
  3. 3.CEA, Institut Nanosciences et Cryogénie, LEMOH UMR 5819 CEA/CNRS/UJFGrenobleFrance

Personalised recommendations