, Volume 18, Issue 5, pp 1335–1348 | Cite as

Cotton fabrics treated with hybrid organic–inorganic coatings obtained through dual-cure processes

  • Jenny Alongi
  • Mihaela Ciobanu
  • Giulio Malucelli


Cotton fabrics were treated with a hybrid organic–inorganic coating obtained through a dual-cure process, i.e. a photopolymerization reaction followed by a thermal treatment for promoting the formation of silica phases through a sol–gel process. To this aim, different amounts of a silica precursor were added to an acrylic UV-curable formulation in the presence of a suitable coupling agent. The thermo-mechanical properties of the treated fabrics were investigated and correlated to the composition and morphology of the hybrid organic–inorganic system. Furthermore, their flame retardancy and combustion behavior were evaluated by flammability tests and cone calorimetry and compared with the performances of pure cotton.


Cotton UV-curing Sol–gel process Hybrid organic–inorganic coatings Thermal stability Flame retardancy 


  1. Acosta Ortiz R, Garcia Valdéz AE, Berlanga Duarte L, Guerrero Santos R, Ovando Flores LR, Soucek MD (2008) Development and study of a coupling agent for photocurable hybrid thiol/ene/cationic formulations. Macromol Chem Phys 209:2157–2168. doi: 0.1002/macp.200800305 CrossRefGoogle Scholar
  2. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite Science and Technology, Wiley, LondonGoogle Scholar
  3. Alongi J, Ciobanu M, Carosio F, Tata J, Malucelli G (2011a) Thermal stability and flame retardancy of polyester, cotton and relative blend textile fabrics treated by sol–gel process. J Appl Polym Sci 119:1961–1969. doi: 10.1002/app.32954 CrossRefGoogle Scholar
  4. Alongi J, Ciobanu M, Malucelli G (2011b) Sol–gel treatments for enhancing fire stability of cotton fabrics: optimization of the process and evaluation of durability. Cellulose 18:167–177. doi: 10.1007/s10570-010-9470-2 CrossRefGoogle Scholar
  5. Amerio E, Sangermano M, Malucelli G, Priola A, Voit B (2005) Preparation and characterization of hybrid nanocomposite coatings by photopolymerization and sol–gel process. Polymer 46:11241–11246. doi: 10.1016/j.polymer.2005.09.062 CrossRefGoogle Scholar
  6. Bandyopadhyay A, Bhowmick AK, De Sarkar M (2004) Synthesis and characterization of acrylic rubber/silica hybrid composites prepared by sol–gel technique. J Appl Polym Sci 93:2579–2589. doi: 10.1002/app.20681 CrossRefGoogle Scholar
  7. Bayramoglu G, Kahraman MV, Kayaman-Apohan N, Gungor A (2006) Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane groups. Prog Org Coat 57:50–55. doi: 10.1016/j.porgcoat.2006.06.002 CrossRefGoogle Scholar
  8. Belfield KD, Crivello JV (2003) Photoinitiated polymerization. ACS Symposium Series, WashingtonCrossRefGoogle Scholar
  9. Fouassier JP (1993) Radiation curing in polymer science and technology. Elsevier Science Publishers LTD Crown House, Essex (UK)CrossRefGoogle Scholar
  10. Hajji P, David L, Gerard JF, Pascault JP, Vigier G (1999) Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci Part B Polym Phys 37:3172–3179. doi: 10.1002/(SICI)1099-0488(19991115)37:22<3172:AID-POLB2>3.0.CO;2-R CrossRefGoogle Scholar
  11. Horrocks AR, Nazarè S, Masood R, Kandola B, Price D (2009) Surface modification of the fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane. Polym Adv Technol 22:22–29. doi: 10.1002/pat.1707 CrossRefGoogle Scholar
  12. Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolisis. J Macromol Sci Rev Macromol Chem Phys C36:721–794Google Scholar
  13. Kloosterboer JG, Lijten GFCM (1987) Thermal and mechanical analysis of a photopolymerization process. Polymer 28:1149–1155. doi: 10.1016/0032-3861(87)90258-8 CrossRefGoogle Scholar
  14. Lecoeur E, Vroman I, Bourbigot S, Delobel R (2006) Optimization of monoguanidine diydrogen phosphate and amino propylethoxysilane based flame retardant formulations for cotton. Polym Degrad Stab 91:1909–1914CrossRefGoogle Scholar
  15. Malucelli G, Priola A, Sangermano M, Amerio E, Zini E, Fabbri E (2005) Hybrid nanocomposites containing silica and PEO segments: preparation through dual-curing process and characterization. Polymer 46:2872–2879. doi: 10.1016/j.polymer.2005.02.045 CrossRefGoogle Scholar
  16. Malucelli G, Amerio E, Minelli M, De Angelis MG (2009) Epoxy–siloxane hybrid coatings by a dual-curing process. Adv Polym Tech 28:77–85. doi: 10.1002/adv.20149 CrossRefGoogle Scholar
  17. Mark JE, Lee C, Bianconi PA (1995) Hybrid organic-inorganic composites, vol 585. ACS Symposium Series, WashingtonGoogle Scholar
  18. Mascia L (1995) Developments in organic-inorganic polymeric hybrids: ceramers.Trends Polym Sci 3:61–66Google Scholar
  19. Pappas SP (1985) Uv-curing, science and technology, vols 1–2. Technology Marketing Corporation, Stanford CAGoogle Scholar
  20. Sangermano M, Amerio E, Epicoco P, Priola A, Rizza G, Malucelli G (2007) Preparation and characterization of hybrid nanocomposite coatings by cationic UV-curing and the sol–gel process of a vinyl ether based system. Macromol Mater Eng 292:634–640. doi: 10.1002/mame.200600507 CrossRefGoogle Scholar
  21. Sangermano M, Bongiovanni R, Longhin M, Rizza G, Kausch CM, Kim Y, Thomas RR (2009a) Hybrid organic/inorganic uv-cured acrylic films with hydrophobic surface properties. Macromol Mater Eng 294:525–531. doi: 10.1002/mame.200900097 CrossRefGoogle Scholar
  22. Sangermano M, Colucci G, Fragale M, Rizza G (2009b) Hybrid organic–inorganic coatings based on thiol-ene systems. React Funct Polym 69:719–723. doi: 10.1016/j.reactfunctpolym.2009.05.008 CrossRefGoogle Scholar
  23. Schartel B, Bartholmai M, Knoll U (2006) Some comments on the main fire retardancy mechanisms in polymer nanocomposites. Polym Adv Technol 17:772–776. doi: 10.1002/pat.792 CrossRefGoogle Scholar
  24. Schwalm R (2007) UV coatings basics recent developments and new applications. Elsevier, Oxford (UK)Google Scholar
  25. Tata J, Alongi J, Carioso F, Frache A (2011) Optimization of the procedure to burn textile fabrics by cone calorimeter: part I. Combustion behavior of polyester. Fire Mater. doi: 10.1002/fam.1061
  26. Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater 8:1667–1671. doi: 10.1021/cm9601143 CrossRefGoogle Scholar
  27. Weng WH, Chen H, Tsai SP, Wu JC (2004) Thermal property of epoxy/SiO2 hybrid material synthesized by the sol–gel process. J Appl Polym Sci 91:532–537. doi: 10.1002/app.13217 CrossRefGoogle Scholar
  28. Yang CQ, He Q (2011) Application of micro-scale combustion calorimetry to the studies of cotton and nylon fabrics treated with organophosphorus flame retardants. J Anal Appl Pyrolysis 91:125–133CrossRefGoogle Scholar
  29. Yang CQ, He Q, Lyon RE, Hu Y (2010) Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab 95:108–115CrossRefGoogle Scholar
  30. Yano S, Iwata K, Kurita K (1998) Physical properties and structure of organic-inorganic hybrid materials produced by sol–gel process. Mater Sci Eng C 6:75–90. doi: 10.1016/S0928-4931(98)00043-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jenny Alongi
    • 1
  • Mihaela Ciobanu
    • 1
  • Giulio Malucelli
    • 1
  1. 1.Dipartimento di Scienza dei Materiali e Ingegneria ChimicaPolitecnico di Torino, sede di AlessandriaAlessandriaItaly

Personalised recommendations