Advertisement

Cellulose

, Volume 18, Issue 2, pp 207–221 | Cite as

A molecular dynamics study of the thermal response of crystalline cellulose Iβ

  • Qiong Zhang
  • Vincent Bulone
  • Hans Ågren
  • Yaoquan Tu
Article

Abstract

Molecular dynamics simulations were performed to better understand the atomic details of thermal induced transitions in cellulose Iβ. The latest version of the GLYCAM force field series (GLYCAM06) was used for the simulations. The unit cell parameters, density, torsion angles and hydrogen-bonding network of the crystalline polymer were carefully analyzed. The simulated data were validated against the experimental results obtained by X-ray diffraction for the crystal structure of cellulose Iβ at room and high temperatures, as well as against the temperature-dependent IR measurements describing the variation of hydrogen bonding patterns. Distinct low and high temperature structures were identified, with a phase transition temperature of 475–500 K. In the high-temperature structure, all the origin chains rotated around the helix axis by about 30° and the conformation of all hydroxymethyl groups changed from tg to either gt on origin chains or gg on center chains. The hydrogen-bonding network was reorganized along with the phase transition. Compared to the previously employed GROMOS 45a4 force field, GLYCAM06 yields data in much better agreement with experimental observations, which reflects that a cautious parameterization of the nonbonded interaction terms in a force field is critical for the correct prediction of the thermal response in cellulose crystals.

Keywords

Cellulose Iβ Molecular dynamics GLYCAM06 Thermal response 

Notes

Acknowledgments

This work was supported by a grant from the Swedish National Infrastructure for Computing (SNIC) for the project “Multiphysics Modeling of Molecular Materials”, SNIC 022/09-25 and by the Swedish Centre for Biomimetic Fibre Engineering (Biomime).

References

  1. Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRefGoogle Scholar
  2. Bergenstråhle M, Thormann E, Nordgren N, Berglund LA (2009) Force pulling of single cellulose chains at the crystalline cellulose-liquid interface: a molecular dynamics study. Langmuir 25:4635–4642CrossRefGoogle Scholar
  3. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  4. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  5. Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 82:59–73CrossRefGoogle Scholar
  6. Hardy BJ, Sarko A (1996) Molecular dynamics simulations and diffraction-based analysis of the native cellulose fibre: structural modelling of the Iα and Iβ phases and their interconversion. Polymer 37:1833–1839CrossRefGoogle Scholar
  7. Heiner AP, Sugiyama J, Teleman O (1995) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohydr Res 273:207–223CrossRefGoogle Scholar
  8. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  9. Hirschfelder JO, Curtiss CF, Brid RB (1954) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  10. Hockney RW, Goel SP, Eastwood J (1974) Quiet high-resolution computer models of a plasma. J Comp Phys 14:148–158CrossRefGoogle Scholar
  11. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRefGoogle Scholar
  12. Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484CrossRefGoogle Scholar
  13. Horikawa Y, Itoh T, Sugiyama J (2006) Preferential uniplanar orientation of cellulose microfibrils reinvestigated by the FTIR technique. Cellulose 13:309–316CrossRefGoogle Scholar
  14. Huang MR, Li XG (1998) Thermal degradation of cellulose and cellulose esters. J Appl Polym Sci 68:293–304CrossRefGoogle Scholar
  15. Kirschner KN, Yongye AB, Tschampel SM, González-outeirtño J, Daniels CR, Lachele Foley B, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydr J Comput Chem 29:622–655Google Scholar
  16. Klemm D, Hans-Perter S, Heinze T (2002) In biopolymers—polysaccharides II. vol. 6, Steinbüchel A (ed). Wiley-VCH, WeinheimGoogle Scholar
  17. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod 7:306–317Google Scholar
  18. Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struc 523:183–196CrossRefGoogle Scholar
  19. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152CrossRefGoogle Scholar
  20. Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349CrossRefGoogle Scholar
  21. Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403CrossRefGoogle Scholar
  22. Neyertz S, Pizzi A, Merlin A, Maigret B, Brown D, Deglise X (2000) A new all-atom force field for crystalline cellulose I. J Appl Polym Sci 78:1939–1946CrossRefGoogle Scholar
  23. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  24. Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RM, Langan P (2003a) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017CrossRefGoogle Scholar
  25. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003b) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefGoogle Scholar
  26. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRefGoogle Scholar
  27. Nosé S (1984) A molecular dynamics methods for simulations in the canonical ensemble. Mol Phys 52:255–268CrossRefGoogle Scholar
  28. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076CrossRefGoogle Scholar
  29. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  30. Pérez S, Mazeau K (2005) In: Dumitriu S (ed) Polysaccharides, structure and functional versatility, 2nd edn. Marcel Dekker, New York, pp 41–68Google Scholar
  31. Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical properties of cellulose. Macromol Theory Simul 4:725–743CrossRefGoogle Scholar
  32. Salmen L, Bergstrom E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR cellulose 16:975–982Google Scholar
  33. Shen T, Gnanakaran S (2009) The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks. Biophys J 96:3032–3040CrossRefGoogle Scholar
  34. Spiwok V, Lipovová P, Skálová T, Vondráčková E, Dohnálek J, Hašek J, Králová B (2006) Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance. J Comput Aid Mol Des 19:887–901CrossRefGoogle Scholar
  35. Spiwok V, Králová B, Tvaroška I (2010) Modelling of β-d-glucopyranose ring distortion in different force fields: a metadynamics study. Carbohydr Res 345:530–537CrossRefGoogle Scholar
  36. Stortz CA, Johnson GP, French AD, Csonka GI (2009) Comparison of different force fields for the study of disaccharides. Carbohydr Res 344:2217–2228CrossRefGoogle Scholar
  37. Sturcova A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339CrossRefGoogle Scholar
  38. Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517CrossRefGoogle Scholar
  39. Tanaka F, Okamura K (2005) Characterization of cellulose molecules in bio-system studied by modeling methods. Cellulose 12:243–252CrossRefGoogle Scholar
  40. van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2005) Gromacs User Manual version 4.0 www.gromacs.org
  41. Viétor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731CrossRefGoogle Scholar
  42. Viëtor RJ, Mazeau K, Lakin M, Pérez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54:342–354CrossRefGoogle Scholar
  43. Vliegenthart JFG, Woods RJ (2006) NMR spectroscopy and computer modeling of carbohydrates: recent advances. American Chemical Society, Washington DC, pp 235–257Google Scholar
  44. Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Polym Phys 40:1095–1102CrossRefGoogle Scholar
  45. Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose Iα to Iβ. Polym J 35:155–159Google Scholar
  46. Wada M, Hori R, Kim UJ, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Iβ and its high-temperature phase. Polym Degrad Stabil 95:1330–1334Google Scholar
  47. Watanabe A, Morita S, Ozaki Y (2006a) Study on temperature-dependent changes in hydrogen bonds in cellulose Iβ by infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation spectroscopy. Biomacromolecules 7:3164–3170CrossRefGoogle Scholar
  48. Watanabe A, Morita S, Ozaki Y (2006b) Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis. Appl Spectrosc 60:611–618CrossRefGoogle Scholar
  49. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157CrossRefGoogle Scholar
  50. Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose Iα and IIII. Biomacromolecules 8:817–824CrossRefGoogle Scholar
  51. Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Qiong Zhang
    • 1
    • 2
  • Vincent Bulone
    • 3
  • Hans Ågren
    • 1
  • Yaoquan Tu
    • 4
  1. 1.Department of Theoretical Chemistry, Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
  2. 2.Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  3. 3.Division of Glycoscience, School of BiotechnologyRoyal Institute of TechnologyStockholmSweden
  4. 4.School of Science and TechnologyÖrebro UniversityÖrebroSweden

Personalised recommendations