Skip to main content
Log in

Radially oriented cellulose triacetate chains on gold nanoparticles

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose triacetate (CTA) derivatives having a disulfide group at the reducing-end (CTA2S, CTA13S, CTA41S), with number average degrees of polymerization (DPns) of 2, 13 and 41, respectively, were prepared. The CTA-self-assembled gold nanoparticles (CTA2Au, CTA13Au, and CTA41Au) were obtained through the reduction of gold salt (HAuCl4) with CTASs. The diameters (d) and the interparticle distances (L) of the gold cores were analyzed by transmission electron microscopy (TEM) observations. The d values of CTA2Au, CTA13Au, and CTA41Au, were 8.7, 7.9, and 13.4 nm respectively. The L values of CTA2Au, CTA13Au, and CTA41Au, were 2.8, 6.3, and 20.9 nm, respectively, and agreed well with the molecular length (l) of CTAS chains (ls of CTA2S, CTA13S, CTA41S = 2.0, 7.5, 21.5 nm, respectively). The hydrodynamic diameters (D) of CTAAu nanoparticles in chloroform solution, measured by dynamic light scattering (DLS), were larger than the d values and increased with the increase in the molecular length of the CTA chains. The CTAS chain was found to work as an excellent stabilizer of the gold nanoparticles in both solid state and solution. The molecular length of CTA chains controlled the size and the alignment of the gold nanoparticles. As a result, the radially oriented CTA chains on the gold nanoparticles were successfully prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arndt P, Bockholt K, Gerdes R, Huschens S, Pyplo J, Redlich H, Samm K (2003) Cellulose oligomers: preparation from cellulose triacetate, chemical transformations and reactions. Cellulose 10:75–83

    Article  CAS  Google Scholar 

  • Arndt P, Gerdes R, Huschens S, Pyplo-Schnieders J, Redlich H (2005) Preparation of cellulose oligomers from cellulose triacetate (standard procedure). Cellulose 12:317–326

    Article  CAS  Google Scholar 

  • Atalla RH, Ellia JD, Schroeder LR (1984) Some eeffects of elevated temperatures on the structure of cellulose and its transformation. J Wood Chem Technol 4:465–482

    Article  CAS  Google Scholar 

  • Azzam T, Eisenberg A (2007) Monolayer-protected gold nanoparticles by the self-assembly of micellar poly (ethylene oxide)-b-poly(epsilon-caprolactone) block copolymer. Langmuir 23:2126–2132

    Article  CAS  Google Scholar 

  • Bernet B, Xu JW, Vasella A (2000) Oligosaccharide analogues of polysaccharides part 20—NMR analysis of templated cellodextrins possessing two parallel chains: A mimic for cellulose I. Helv Chim Acta 83:2072–2114

    Article  CAS  Google Scholar 

  • Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Colloids Surf A-Physicochem Eng Aspects 202:175–186

    Article  CAS  Google Scholar 

  • Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. and Whyman, R. (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. Journal of the Chemical Society-Chemical Communications 801–802

  • Brust, M., Fink, J., Bethell, D., Schiffrin, D.J. and Kiely, C. (1995) Synthesis and reactions of functionalized gold nanoparticles. Journal of the Chemical Society-Chemical Communications 1655–1656

  • Ceresa RJ (1961) The synthesis of block and graft copolymers of cellulose and its derivatives. Polymer 2:213–219

    Article  CAS  Google Scholar 

  • Corbierre MK, Cameron NS, Lennox RB (2004) Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir 20:2867–2873

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  • de Oliveira W, Glasser WG (1994a) Multiphase materials with lignin. 13. Block-copolymers with cellulose propionate. Polymer 35:1977–1985

    Article  Google Scholar 

  • de Oliveira W, Glasser WG (1994b) Novel cellulose derivatives. 2. Synthesis and characteristics of mono-functional cellulose propionate segments. Cellulose 1:77–86

    Article  Google Scholar 

  • Dulmage WJ (1957) The molecular and crystal structure of cellulose triacetate. J Polym Sci 26:277–288

    Article  CAS  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  • Enomoto Y, Kamitakahara H, Takano T, Nakatsubo F (2006) Synthesis of diblock copolymers with cellulose derivatives. 3. Cellulose derivatives carrying a single pyrene group at the reducing-end and fluorescent studies of their self-assembly systems in aqueous NaoH solutions. Cellulose 13:437–448

    Article  CAS  Google Scholar 

  • Enomoto-Rogers Y, Kamitakahara H, Nakayama K, Takano T, Nakatsubo F (2009a) Synthesis and thermal properties of poly(methyl methacrylate)-graft-(cellobiosylamine-C15). Cellulose 16:519–530

    Article  CAS  Google Scholar 

  • Enomoto-Rogers Y, Kamitakahara H, Takano T, Nakatsubo F (2009b) Cellulosic graft copolymer: Poly(methyl methacrylate) with cellulose side chains. Biomacromolecules 10:2110–2117

    Article  CAS  Google Scholar 

  • Feger C, Cantow HJ (1980) Cellulose containing block co-polymers. 1. Synthesis of trimethylcellulose-(b-poly(oxytetramethylene))-star block co-polymers. Polym Bull 3:407–413

    Article  CAS  Google Scholar 

  • Fort RJ, Hutchinson RJ, Moore WR, Murphy M (1963) Viscosity temperature relationships for dilute solutions of high polymers. Polymer 4:35–46

    Article  CAS  Google Scholar 

  • Glasser WG (2004) Prospects for future applications of cellulose acetate. Macromol Symp 208:371–394

    Article  CAS  Google Scholar 

  • Gulari E, Gulari E, Tsunashima Y, Chu B (1979) Photon-correlation spectroscopy of particle distributions. J Chem Phys 70:3965–3972

    Article  CAS  Google Scholar 

  • Haruta M, Date M (2001) Advances in the catalysis of au nanoparticles. Appl Catal A-Gen 222:427–437

    Article  CAS  Google Scholar 

  • Heath JR, Knobler CM, Leff DV (1997) Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J Phys Chem B 101:189–197

    Article  CAS  Google Scholar 

  • Howard P, Parikh RS (1968) Solution properties of cellulose triacetate. 2. Solubility and viscosity studies. J Polym Sci A Polym Chem 6:537–546

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M (1991) Preparation of low-molecular-weight celluloses using phosphoric-acid. Mokuzai Gakkaishi 37:339–344

    CAS  Google Scholar 

  • Kamitakahara H, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 1. Model study with azidoalkyl carboxylic acid and cellobiosylamine derivative. Cellulose 12:209–219

    Article  CAS  Google Scholar 

  • Kamitakahara H, Enomoto Y, Hasegawa C, Nakatsubo F (2005) Synthesis of diblock copolymers with cellulose derivatives. 2. Characterization and thermal properties of cellulose triacetate-block-oligoamide-15. Cellulose 12:527–541

    Article  CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem-Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  • Kim S, Stannett VT, Gilbert RD (1973) New class of biodegradable polymers. J Polym Sci C-Polym Lett 11:731–735

    Article  CAS  Google Scholar 

  • Kim S, Stannett VT, Gilbert RD (1976) Biodegradable cellulose block copolymers. J Macromol Sci-Chem A 10:671–679

    Article  Google Scholar 

  • Kolpak FJ, Blackwell J (1976) Determination of structure of cellulose II. Macromolecules 9:273–278

    Article  CAS  Google Scholar 

  • Kono H, Numata Y, Nagai N, Erata T, Takai M (1999) Studies of the series of cellooligosaccharide peracetates as a model for cellulose triacetate by 13C CP/MAS NMR spectroscopy and x-ray analyses. Carbohydr Res 322:256–263

    Article  CAS  Google Scholar 

  • Kono H, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 2. Complete assignment of the 13C resonance for the ring carbons of cellulose triacetate polymorphs. J Am Chem Soc 124:7512–7518

    Article  CAS  Google Scholar 

  • Kumar R, Pandey AK, Tyagi AK, Dey GK, Ramagiri SV, Bellare JR, Goswami A (2009) In situ formation of stable gold nanoparticles in polymer inclusion membranes. J Colloid Interf Sci 337:523–530

    Article  CAS  Google Scholar 

  • Lai MK, Chang CY, Lien YW, Tsiang RCC (2006) Application of gold nanoparticles to microencapsulation of thioridazine. J Control Release 111:352–361

    Article  CAS  Google Scholar 

  • Li ZH, Taubert A (2009) Cellulose/gold nanocrystal hybrids via an ionic liquid/aqueous precipitation route. Molecules 14:4682–4688

    Article  CAS  Google Scholar 

  • Li DX, Cui Y, Wang KW, He Q, Yan XH, Li JB (2007a) Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Adv Funct Mater 17:3134–3140

    Article  CAS  Google Scholar 

  • Li DX, He Q, Cui Y, Wang KW, Zhang XM, Li JB (2007b) Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment. Chem-A Eur J 13:2224–2229

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  • Liu Z.M, Li M, Turyanska L, Makarovsky O, Patane A, Wu WJ, Mann S (2010) Self-assembly of electrically conducting biopolymer thin films by cellulose regeneration in gold nanoparticle aqueous dispersions. Chemistry of Materials 22:2675–2680

    Google Scholar 

  • Loskutov AI, Uryupina OY, Vysotskii VV, Roldughin VI (2009) Surface faceting of gold nanoparticles and adsorption of organic macromolecules. Colloid J 71:668–671

    Article  CAS  Google Scholar 

  • Maye MM, Lou YB, Zhong CJ (2000) Core-shell gold nanoparticle assembly as novel electrocatalyst of co oxidation. Langmuir 16:7520–7523

    Article  CAS  Google Scholar 

  • Mezger T, Cantow HJ (1983a) Cellulose containing block co-polymers. 4. Cellulose triester macroinitiators. Angew Makromol Chem 116:13–27

    Article  CAS  Google Scholar 

  • Mezger T, Cantow HJ (1983b) Cellulose containing block co-polymers. 5. Threeblock co-polymer syntheses via macroinitiator. Makromol Chem-Rapid Commun 4:313–320

    Article  CAS  Google Scholar 

  • Mezger T, Cantow HJ (1984) Cellulose-containing triblock copolymers—syntheses via cellulosic dithiodiaryl photoinitiators. Polym Photochem 5:49–56

    Article  CAS  Google Scholar 

  • Murty KVSN, Xie T, Bernet B, Vasella A (2006) Oligosaccharide analogues of polysaccharides—part 26—mimics of cellulose I and cellulose II: Di- and monoalkynyl c-cellosides of 1, 8-disubstituted anthraquinones. Helv Chim Acta 89:675–730

    Article  CAS  Google Scholar 

  • Nakatsubo F, Maeda K, Murakami K (1987) Reactivity of the reducing-end of cellulose. 1. Preparation of phenylcelluloside. Bull Kyoto Univ Forests 59:301

    Google Scholar 

  • Ohno K, Koh K, Tsujii Y, Fukuda T (2002) Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerization. Macromolecules 35:8989–8993

    Article  CAS  Google Scholar 

  • Pinto RJB, Marques P, Martins MA, Neto CP, Trindade T (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interf Sci 312:506–512

    Article  CAS  Google Scholar 

  • Pohjola L, Eklund V (1977) Polyurethane block copolymers from cellulose triacetate. Paperi Ja Puu-Paper And Timber 59:117–120

    CAS  Google Scholar 

  • Roche EJ, Obrien JP, Allen SR (1986) Preparation of cellulose triacetate: From solution. Polym Commun 27:138–140

    CAS  Google Scholar 

  • Sata H, Murayama M, Shimamoto S (2004) Properties and applications of cellulose triacetate film. Macromol Symp 208:323–333

    Article  CAS  Google Scholar 

  • Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) Co oxidation over supported gold catalysts-“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197:113–122

    Article  CAS  Google Scholar 

  • Shin Y, Bae IT, Arey BW, Exarhos GJ (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112:4844–4848

    Article  CAS  Google Scholar 

  • Sipahi-Saglam E, Gelbrich M, Gruber E (2003) Topochemically modified cellulose. Cellulose 10:237–250

    Article  CAS  Google Scholar 

  • Sprague BS, Riley JL, Noether HD (1958) Factors influencing the crystal structure of cellulose triacetate. Text Res J 28:275–287

    Article  CAS  Google Scholar 

  • Stannett VT, Williams JL (1976) Modification of wool and cellulose fibers by grafting. J Macromol Sci-Chem A 10:637–652

    Article  Google Scholar 

  • Steinmann HW (1970) Elastomeric fibers from cellulose triacetate. Polym prepr Am Chem Soc. Div Polym Chem 11:285–290

    CAS  Google Scholar 

  • Stipanovic AJ, Sarko A (1978) Molecular and crystal-structure of cellulose triacetate: - parallel chain structure. Polymer 19:3–8

    Article  CAS  Google Scholar 

  • Strong L, Whitesides GM (1988) Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single-crystals—electron-diffraction studies. Langmuir 4:546–558

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Wenz G, Liepold P, Bordeanu N (2004) Monolayers of reactive cellulose derivatives. Macromol Symp 210:203–208

    Article  CAS  Google Scholar 

  • Wenz G, Liepold P, Bordeanu N (2005) Synthesis and sam formation of water soluble functional carboxymethylcelluloses: Thiostilfates and thioethers. Cellulose 12:85–96

    Article  CAS  Google Scholar 

  • Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides.11. Molecular and crystal-structure of native ramie cellulose. Macromolecules 13:1183–1187

    Article  CAS  Google Scholar 

  • Wuelfing WP, Gross SM, Miles DT, Murray RW (1998) Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J Am Chem Soc 120:12696–12697

    Article  CAS  Google Scholar 

  • Yagi S, Kasuya N, Fukuda K (2010) Synthesis and characterization of cellulose-b-polystyrene. Polymer Journal 42:342–348

    Google Scholar 

  • Yokota S, Kitaoka T, Opietnik M, Rosenau T, Wariishi H (2008) Synthesis of gold nanoparticles for in situ conjugation with structural carbohydrates. Angew Chem Int Ed 47:9866–9869

    Article  CAS  Google Scholar 

  • Yonezawa T, Onoue S, Kimizuka N (2001a) Formation of uniform fluorinated gold nanoparticles and their highly ordered hexagonally packed monolayer. Langmuir 17:2291–2293

    Article  CAS  Google Scholar 

  • Yonezawa T, Yasui K, Kimizuka N (2001b) Controlled formation of smaller gold nanoparticles by the use of four-chained disulfide stabilizer. Langmuir 17:271–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grand-in-Aid from a Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists (Y.E-R), and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (Nos. 18688009 and 21580205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kamitakahara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enomoto-Rogers, Y., Kamitakahara, H., Yoshinaga, A. et al. Radially oriented cellulose triacetate chains on gold nanoparticles. Cellulose 17, 923–936 (2010). https://doi.org/10.1007/s10570-010-9437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9437-3

Keywords

Navigation