, Volume 17, Issue 2, pp 231–243 | Cite as

Carbon-13 solid state NMR investigation and modeling of the morphological reorganization in regenerated cellulose fibres induced by controlled acid hydrolysis

  • Roger Ibbett
  • Dimitra Domvoglou
  • Franz Wortmann
  • K. Christian Schuster


CPMAS carbon-13 NMR has been used to follow structural changes affecting regenerated cellulose fibres during hydrolysis by mineral acids. The C4 envelope of regenerated cellulose was deconvoluted into separate peaks, for ordered (crystal), part-ordered (surface) and disordered (non-crystal) polymer, which allowed calculation of average crystal lateral sizes, in good agreement with WAXD data. A geometrical model has been used to describe recrystallisation at lateral crystal faces, occurring within a disordered boundary surrounding the crystal interior. A one-dimensional relaxation-diffusion model has also been constructed, appropriate to the spinodal structure of lyocell. This has provided estimates of proton T relaxation times for pure crystalline (cellulose II) and non-crystalline cellulose, around 24 and 4.5 ms, respectively, at a 45 kHz B1 field. From the model, crystalline and non-crystalline regions in lyocell are estimated to each be around 2.5 nm thickness for a material of 50% crystallinity, consistent with the 2–3 nm dimensions derived from C4 peak devonvolution.


Cellulose Carbon-13 NMR Regenerated fibres Recrystallization Structure Hydrolysis Acid Depolymerisation 



The authors are grateful for the financial support of the Christian Doppler Society of Austria, and of Lenzing AG. The authors would also like to Dr Mario Fasching, formerly of Lenzing AG, for assistance with NMR measurements.


  1. Abu-Rous M, Ingolic E, Schuster KC (2006) Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy. Cellulose 13(4):441–447Google Scholar
  2. Battista OA (1950) Hydrolysis and crystallisation of cellulose. Ind Eng Chem 42(3):502CrossRefGoogle Scholar
  3. Battista OA, Smith PA (1962) Microcrystalline cellulose. Ind Eng Chem 54(20):20–29CrossRefGoogle Scholar
  4. Bootten TJ, Harris PJ, Melton LD, Newman RH (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan ± cellulose interactions in the cell wall. J Exp Bot 55(397):571–583CrossRefGoogle Scholar
  5. Bredereck F, Hermanutz F (2005) Man-made cellulosics. Review of progress in coloration and related topics. Soc Dye Colour 35:59–75Google Scholar
  6. Clauss J, Schmidt-Rohr K, Spiess HW (1993) Acta Polym I 44Google Scholar
  7. Crawshaw J, Cameron RE (2000) A small angle X-ray scattering study of pore structure in Tencel cellulose fibres and the effects of physical treatments. Polymer 41:4691–4698CrossRefGoogle Scholar
  8. da Silva NM, Tavares MIB, Stejskal EO (2000) 13C-detected 1H spin diffusion and 1H relaxation study of multicomponent polymer blends. Macromolecules 33:115–119CrossRefGoogle Scholar
  9. Demco DE, Johansson A, Tegenfeldt J (1995) Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers. Solid State Nucl Magn Reson 4:13–38CrossRefGoogle Scholar
  10. Domvoglou D, Ibbett R, Wortmann F, Taylor J (2009) Controlled thermo-catalytic modification of regenerated cellulosic fibres using magnesium chloride Lewis acid. Cellulose 16:1075–1087CrossRefGoogle Scholar
  11. Douglass DC, Jones J (1966) Nuclear magnetic relaxation of n-alkanes in the rotating frame. J Chem Phys 45:956CrossRefGoogle Scholar
  12. Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 NMR of cellulose I related to morphology and crystal structure. Macromolecules 14:570–574CrossRefGoogle Scholar
  13. Ekenstam A (1936) Berichte 69:540–553Google Scholar
  14. Fink H-P, Weigel P, Purs HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473CrossRefGoogle Scholar
  15. Focher B, Palma MT, Canetti M, Torri G, Cosentino C, Gastaldi G (2001) Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crop Prod 13:193–208CrossRefGoogle Scholar
  16. Fyfe CA, Dudley RL, Stephenson PJ, Deslandes Y, Hamer GK, Marchessault RH (1983) Carbon-13 CP/MAS NMR spectra of solid cellulose oligomers and the structure of cellulose. J Am Chem Soc 105:2469–2472CrossRefGoogle Scholar
  17. Garvey CJ, Parker IH, Simon GP, Whittaker AK (2006) The hydration of paper studied with solid-state magnetisation-exchange 1H NMR Spectroscopy. Holzforschung 60:409–418CrossRefGoogle Scholar
  18. Gil AM, Neto CP (1999) Solid-state NMR studies of wood and other lignocellulosic materials. Annu Rep NMR Spectrosc 37:75–117CrossRefGoogle Scholar
  19. Havens JR, VanderHart DL (1985) Morphology of polyethylene terephthalate fibers as studied by multipulse 1H NMR. Macromolecules 18:1663–1678CrossRefGoogle Scholar
  20. Hediger S, Lesage A, Emsley L (2002) A new NMR method for the study of local mobility in solids and application to hydration of biopolymers in plant cell walls. Macromolecules 35:5078–5084CrossRefGoogle Scholar
  21. Henrichs PM, Tribone J, Massa DJ (1988) Blend miscibility of bisphenol A polycarbonate and polyethylene terephthalate as studied by solid-state high-resolution 13C NMR spectroscopy. Macromolecules 21:1282–1291CrossRefGoogle Scholar
  22. Hermans PH, Weidinger A (1949) Chnages in crystallinity upon heterogeneous acid hydrolysis of cellulose fibres. J Pol Sci IV:317–322CrossRefGoogle Scholar
  23. Hubbe MA, Rojas OJ, Lucian LA, Sain M (2008) Cellulosic nanocomposites review. Bioresources 3(3):929–980Google Scholar
  24. Ibbett RN, Domvoglou D, Fasching M (2007) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution Carbon-13 solid-state NMR. Polymer 48:1287–1296CrossRefGoogle Scholar
  25. Ibbett RN, Domvoglou D, Phillips DAS (2008) The hydrolysis and recrystallisation of lyocell and comparative cellulosic fibres in solutions of mineral acid. Cellulose 15(2):241–254CrossRefGoogle Scholar
  26. Iranmahboob J, Nadim F, Monemib S (2002) Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22:401–404CrossRefGoogle Scholar
  27. Jayme G, Roffael E (1969) Über dir anderungen der aöntgenkristallinität bei der heterogenen hydrolyse der cellulose. Das Papier 23(1):1–7Google Scholar
  28. Laity PR, Glover PM, Hay JN (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 43:5827–5837CrossRefGoogle Scholar
  29. Levis SR, Deasy PB (2001) Pharmaceutical applications of size reduced grades of surfactant co-processed microcrystalline cellulose. Int J Pharm 230:25–33CrossRefGoogle Scholar
  30. Maier G, Zipper P, Stubicar M, Schurz J (2005) Amorphization of different cellulose samples by ballmilling. Cellul Chem Technol 39(3–4):167–177Google Scholar
  31. Maloney MT, Chapman TW (1985) Dilute acid hydrolysis of paper Birch: kinetics studies of xylan and acetyl-group hydrolysis. Biotech Bioeng 27:355–361CrossRefGoogle Scholar
  32. Masson J-F, Manley RSJ (1992) Solid-state NMR of some cellulose/synthetic polymer blends. Macromolecules 25:589–592CrossRefGoogle Scholar
  33. Nelson ML, Tripp VW (1953) Determination of the levelling-off degree of polymerisation of cotton and rayon. J Pol Sci 10(6):577–586CrossRefGoogle Scholar
  34. Nevell TP (1983) Acid and alkali reactions of cellulose. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood, UKGoogle Scholar
  35. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C signal strengths. Solid State Nucl Magn Reson 15:21–29CrossRefGoogle Scholar
  36. Newman RH, Davidson TC (2004) Molecular conformations at the cellulose-water interface. Cellulose 11:23–32CrossRefGoogle Scholar
  37. Newman RH, Hemmingson JA (1994) Carbon-13 distinction between categories of molecular order and disorder in cellulose. Cellulose 2:95–110CrossRefGoogle Scholar
  38. Nissan AH (1976) H-bond dissociation in hydrogen bond dominated solids. Macromolecules 9(5):840–850CrossRefGoogle Scholar
  39. Packer KJ, Poplett IJF, Taylor MJ (1988) lH nuclear magnetic resonance and spin-lattice relaxation in solid, high-density polyethylene. J Chem Soc Faraday Trans 84(11):3851–3863CrossRefGoogle Scholar
  40. Phillip HJ, Nelson ML, Ziifle HM (1947) Crystallinity of celllose fibres as determined by acid hydrolysis. Text Res J 17(11):585–596CrossRefGoogle Scholar
  41. Radloff D, Boeffel C, Spiess HW (1996) Cellulose and cellulose/poly (vinyl alcohol) blends. 2. Water organization revealed by solid-state NMR spectroscopy. Macromolecules 29:1528–1534CrossRefGoogle Scholar
  42. Salmen NL, Back EL (1977) The influence of water on the glass transition temperature of cellulose. Tappi J 60(12):137–140Google Scholar
  43. Sharples A (1954) The hydrolysis of cellulose part 1. The fine structure of Egyptian cotton. J Pol Sci 13:393–401CrossRefGoogle Scholar
  44. Sharples A (1957) The hydrolysis of cellulose and its relation to structure. Trans Faraday Soc 53:1003–1014CrossRefGoogle Scholar
  45. Sharples A (1958) The hydrolysis of cellulose and its relation to structure, Part 2. Trans Faraday Soc 54:913–917CrossRefGoogle Scholar
  46. Spĕváček J, Brus TD, Grohens Y (2007) Solid-state NMR study of biodegradable starch/polycaprolactone blends. Eur Polym J 43:1866–1875CrossRefGoogle Scholar
  47. Vanderhart DL, Atalla RH (1984) Studies of microstructure in native celluloses using carbon-13 solid-state NMR. Macromoleules 17(8):1468CrossRefGoogle Scholar
  48. VanderHart DL, McFadden GB (1996) Some perspectives on the interpretation of proton NMR spin diffusion data in terms of polymer morphologies. Solid State Nucl Magn Reson 7:45–66CrossRefGoogle Scholar
  49. Wang J, Cheung MK, Mi Y (2002) Miscibility and morphology in crystalline/amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC, FTIR, and 13C solid state NMR. Polymer 43(4):1357–1364CrossRefGoogle Scholar
  50. Wickholm K, Larsson P-T, Iverson T (1998) Assignment of non-crystalline forms of cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  51. Wood BF, Conner AH, Hill Jnr CG (1989) The heterogeneous character of the dilute acid hydrolysis of crystalline cellulose. J App Pol Sci 37:1373–1394CrossRefGoogle Scholar
  52. Wormald P, Wickhold K, Larsson P-T, Iversen T (1996) Conversions between ordered and disordered cellulose. Effects of mechanical treatment followed by cyclic wetting and drying. Cellulose 3:141–152CrossRefGoogle Scholar
  53. Yokota H, Sie T, Horii F, Kitamaru R (1990) 13-C CP/MAS NMR study on alkali cellulose. J App Pol Sci 41:783–791CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Roger Ibbett
    • 1
    • 3
  • Dimitra Domvoglou
    • 1
  • Franz Wortmann
    • 1
  • K. Christian Schuster
    • 2
  1. 1.Christian Doppler Laboratory for Fibre and Textile and Chemistry in CellulosicsUniversity of ManchesterManchesterUK
  2. 2.Lenzing AG, Innovation and Business Development TextilesLenzingAustria
  3. 3.School of Biosciences, Division of Food SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations