, Volume 17, Issue 3, pp 559–574 | Cite as

Oxygen and oil barrier properties of microfibrillated cellulose films and coatings

  • Christian AulinEmail author
  • Mikael Gällstedt
  • Tom Lindström


The preparation of carboxymethylated microfibrillated cellulose (MFC) films by dispersion-casting from aqueous dispersions and by surface coating on base papers is described. The oxygen permeability of MFC films were studied at different relative humidity (RH). At low RH (0%), the MFC films showed very low oxygen permeability as compared with films prepared from plasticized starch, whey protein and arabinoxylan and values in the same range as that of conventional synthetic films, e.g., ethylene vinyl alcohol. At higher RH’s, the oxygen permeability increased exponentially, presumably due to the plasticizing and swelling of the carboxymethylated nanofibers by water molecules. The effect of moisture on the barrier and mechanical properties of the films was further studied using water vapor sorption isotherms and by humidity scans in dynamic mechanical analysis. The influences of the degree of nanofibrillation/dispersion on the microstructure and optical properties of the films were evaluated by field-emission scanning electron microscopy (FE-SEM) and light transmittance measurements, respectively. FE-SEM micrographs showed that the MFC films consisted of randomly assembled nanofibers with a thickness of 5–10 nm, although some larger aggregates were also formed. The use of MFC as surface coating on various base papers considerably reduced the air permeability. Environmental scanning electron microscopy (E-SEM) micrographs indicated that the MFC layer reduced sheet porosity, i.e., the dense structure formed by the nanofibers resulted in superior oil barrier properties.


MFC Barrier Oil Oxygen permeability Nanofibers Nanocellulose Packaging Films SEM Coating 



The authors wish to thank BIM Kemi Sweden AB and the Knowledge Foundation through its graduate school YPK for financial support. Professor Lars Ödberg, Dr. Torbjörn Pettersson and Dr. Henrik Kjellgren are acknowledged for valuable discussions. Joanna Hornatowska is gratefully acknowledged for help with the E-SEM measurements.

Supplementary material

10570_2009_9393_MOESM1_ESM.doc (3.7 mb)
(DOC 3801 kb)


  1. Arvanitoyannis IS (2006) Handbook of biodegradable polymeric materials and their applications. American Scientific Publishers, USGoogle Scholar
  2. Arvanitoyannis I, Psomiadou E, Nakayama A, Aiba S, Yamamoto N (1997) Edible films made from gelatin, soluble starch and polyols, part 3. Food Chem 60:593–604CrossRefGoogle Scholar
  3. Arvanitoyannis I, Nakayama A, Aiba S-I (1998) Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydr Polym 36:105–119CrossRefGoogle Scholar
  4. Asthana SK, Koteswara Rao MVR, Balakrishna KJ (1964) Pinene-free turpentine as a paint thinner. Perfumery Essential Oil Record 55:725–727Google Scholar
  5. Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25:7675–7685CrossRefGoogle Scholar
  6. Avranitoyannis I, Psomiadou E, Nakayama A (1997) Edible films made from sodium caseinate, starches, sugars or glycerol. Part 1. Carbohydr Polym 31:179–192CrossRefGoogle Scholar
  7. Bardage S, Donaldson L, Tokoh C, Daniel G (2004) Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. Nordic Pulp Paper Res J 19:448–452CrossRefGoogle Scholar
  8. Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016CrossRefGoogle Scholar
  9. Butler BL, Vergano PJ, Testin RF, Bunn JM, Wiles JL (1996) Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J Food Sci 61:953–955, 961Google Scholar
  10. Chanzy H (2009) Personal communicationGoogle Scholar
  11. Chen W, Lickfield GC, Yang CQ (2004) Molecular modeling of cellulose in amorphous state part II: effects of rigid and flexible crosslinks on cellulose. Polymer 45:7357–7365CrossRefGoogle Scholar
  12. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Physics 3:72–79CrossRefGoogle Scholar
  13. Deisenroth E, Jho C, Haniff M, Jennings J (1998) The designing of a new grease repellent fluorochemical for the paper industry. Surf Coatings Int 81:440–447CrossRefGoogle Scholar
  14. Diddens I, Murphy B, Krisch M, Mueller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRefGoogle Scholar
  15. Dole P, Joly C, Espuche E, Alric I, Gontard N (2004) Gas transport properties of starch based films. Carbohydr Polym 58:335–343CrossRefGoogle Scholar
  16. Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaille JY, Chanzy H (1999) Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126CrossRefGoogle Scholar
  17. Fengel D (1971) Ultrastructural organization of the cell wall components. J Polym Sci, Polym Symposia 36:383–392CrossRefGoogle Scholar
  18. Fried JR, Karasz FE, MacKnight WJ (1978) Compatibility of poly(2, 6-dimethyl-1, 4-phenylene oxide) (PPO)/poly(styrene-co-4-chlorostyrene) blends. 1. Differential scanning calorimetry and density studies. Macromolecules 11:150–158CrossRefGoogle Scholar
  19. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRefGoogle Scholar
  20. Gontard N, Guilbert S, Cuq JL (1992) Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J Food Sci 57:190–195, 199Google Scholar
  21. Gontard N, Thibault R, Cuq B, Guilbert S (1996) Influence of relative humidity and film composition on oxygen and carbon dioxide permeability’s of edible films. J Agric Food Chem 44:1064–1069CrossRefGoogle Scholar
  22. Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromolecules 5:1528–1535CrossRefGoogle Scholar
  23. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1493–1505CrossRefGoogle Scholar
  24. Hartman J, Albertsson A-C, Lindblad MS, Sjöberg J (2006a) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991CrossRefGoogle Scholar
  25. Hartman J, Albertsson A-C, Sjöberg J (2006b) Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules 7:1983–1989CrossRefGoogle Scholar
  26. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRefGoogle Scholar
  27. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. JAppl Polym Sci: Appl Polym Symp 37:797–813Google Scholar
  28. Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 9:2042–2047CrossRefGoogle Scholar
  29. Ito K, Saito Y, Yamamoto T, Ujihira Y, Nomura K (2001) Correlation study between oxygen permeability and free volume of ethylene-vinyl alcohol copolymer through positronium lifetime measurement. Macromolecules 34:6153–6155CrossRefGoogle Scholar
  30. Jeronimidis G, Vincent JFV (1984) Composite materials. Topics Mol Struct Biol 5:187–210Google Scholar
  31. Kendall K (2001) Molecular adhesion and its applications: the sticky universe. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  32. Kissa E (2001) Fluorinated surfactants and repellents, revised and expanded. Marcel Dekker, New YorkGoogle Scholar
  33. Kjellgren H, Engström G (2006) Influence of base paper on the barrier properties of chitosan-coated papers. Nordic Pulp Paper Res J 21:685–689CrossRefGoogle Scholar
  34. Kjellgren H, Gällstedt M, Engström G, Järnström L (2006) Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym 65:453–460CrossRefGoogle Scholar
  35. Kohler R, Alex R, Brielmann R, Ausperger B (2006) A new kinetic model for water sorption isotherms of cellulosic materials. Macromol Symp 244:89–96CrossRefGoogle Scholar
  36. Krochta JM (2007) Food packaging. Marcel Dekker Inc, New YorkGoogle Scholar
  37. Labuschagne PW, Germishuizen WA, Verryn SMC, Moolman FS (2008) Improved oxygen barrier performance of poly(vinyl alcohol) films through hydrogen bond complex with poly(methyl vinyl ether-co-maleic acid). Eur Polym J 44:2146–2152CrossRefGoogle Scholar
  38. Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packaging Technol Sci 16:149–158CrossRefGoogle Scholar
  39. McGonigle EA, Liggat JJ, Pethrick RA, Jenkins SD, Daly JH, Hayward D (2000) Permeability of N2, Ar, He, O2 and CO2 through biaxially oriented polyester films—dependence on free volume. Polymer 42:2413–2426CrossRefGoogle Scholar
  40. McHugh TH, Krochta JM (1994a) Edible coatings films improve food quality. Technomic, LancasterGoogle Scholar
  41. McHugh TH, Krochta JM (1994b) Permeability properties of edible films. CRC Press, USGoogle Scholar
  42. McHugh TH, Krochta JM (1994c) Sorbitol- vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. J Agric Food Chem 42:841–845CrossRefGoogle Scholar
  43. Miller KS, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Technol 8:228–237CrossRefGoogle Scholar
  44. Newton KG, Rigg WJ (1979) The effect of film permeability on the storage life and microbiology of vacuum-packed meat. J Appl Bacteriol 47:433–441Google Scholar
  45. Ono H, Yamada H, Matsuda S, Okajima K, Kawamoto T, Iijima H (1998) Proton-NMR relaxation of water molecules in the aqueous microcrystalline cellulose suspension systems and their viscosity. Cellulose 5:231–247CrossRefGoogle Scholar
  46. Orts WJ, Godbout L, Marchessault RH, Revol JF (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small-angle neutron scattering study. Macromolecules 31:5717–5725CrossRefGoogle Scholar
  47. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  48. Pedrosa P, Pomposo JA, Calahorra E, Cortazar M (1994) On the glass transition behavior, interaction energies, and hydrogen-bonding strengths of binary poly(p-vinylphenol)/polyether blends. Macromolecules 27:102–109CrossRefGoogle Scholar
  49. Psomiadou E, Arvanitoyannis I, Yamamoto N (1997) Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols. Part 2. Carbohydr Polym 31:193–204CrossRefGoogle Scholar
  50. Rindlav-Westling A, Stading M, Hermansson A-M, Gatenholm P (1998) Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr Polym 36:217–224CrossRefGoogle Scholar
  51. Schwartz C (1981) Oil resistance utilizing fluorochemicals. Technical association of the pulp and paper industry, section sizing, Chicago. Tappi Press, USGoogle Scholar
  52. Sothornvit R, Krochta JM (2000) Plasticizer effect on oxygen permeability of beta -lactoglobulin films. J Agric Food Chem 48:6298–6302CrossRefGoogle Scholar
  53. Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRefGoogle Scholar
  54. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  55. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827Google Scholar
  56. Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173Google Scholar
  57. Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRefGoogle Scholar
  58. Winter L, Wågberg L, Ödberg L, Lindström T (1986) Polyelectrolytes adsorbed on the surface of cellulosic materials. J Colloid Interf Sci 111:537–543CrossRefGoogle Scholar
  59. Wu J, Yuan Q (2002) Gas permeability of a novel cellulose membrane. J Membr Sci 204:185–194CrossRefGoogle Scholar
  60. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Christian Aulin
    • 1
    • 2
    Email author
  • Mikael Gällstedt
    • 3
  • Tom Lindström
    • 3
  1. 1.BIM Kemi ABStenkullenSweden
  2. 2.Department of Fibre and Polymer TechnologySchool of Chemical Science and Engineering, The Royal Institute of TechnologyStockholmSweden
  3. 3.Innventia ABStockholmSweden

Personalised recommendations