Skip to main content
Log in

Grafting from ramie fiber with poly(MMA) or poly(MA) via reversible addition-fragmentation chain transfer polymerization

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Reversible addition-fragmentation chain transfer (RAFT) polymerization was utilized to control the grafting of methyl methacrylate (MMA) and methyl acrylate (MA) from natural ramie fibers substrate. The hydroxyl groups of ramie fibers were first converted to 2-dithiobenzoyl isobutyrate as a RAFT chain transfer agent (CTA), which was further grafted with MMA or MA mediated by the RAFT polymerization in a presence of 2-(ethoxycarbonyl)prop-2-yl dithiobenzoate as a free chain transfer agent. Hydrophobic poly(MMA) or poly(MA) modified ramie fibers with contact angles greater than 130° were obtained. The modified ramie fibers were analyzed by gravimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetry and contact angle measurements. The results indicate that the polymer chains had indeed been grafted from the surface of the ramie fibers with an average 33% of the hydroxyl groups in the raw ramie fiber substituted by 2-bromoisobutyryl bromide and an average grafting ratio of 25% poly(MMA) or poly(MA) related to ramie fiber. The homopolymers formed in the copolymerization were also analyzed to estimate molecular weights and polydispersity indices of grafting chains from the surface of ramie fibers by size exclusion chromatography, which showed narrow polydispersity with the PDIs to be <1.32. This study provides a novel and feasible approach to the preparation of functional composite materials for utilizing the abundant natural ramie fiber cellulose resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MMA:

Methyl methacrylate

MA:

Methyl acrylate

BIBB:

2-Bromoisobutyryl bromide

ECPDB:

2-(Ethoxycarbonyl)prop-2-yl dithiobenzoate

AIBN:

2,2′-Azobis(isobutyronitrile)

THF:

Tetrahydrofuran

NMP:

N-methyl-2-pyrrolidone

DMAP:

2-(Dimethylamino)pyridine

CTA:

Chain transfer agent

TMS:

Tetramethylsilane

RAFT:

Reversible addition-fragmentation chain transfer

FT-IR:

Fourier transform infrared spectroscopy

SEM:

Scanning electron microscopy

DSC:

Differential scanning calorimetry

NMR:

Nuclear magnetic resonance spectroscopy

TG:

Thermogravimetry

PDIs:

Polydispersity indices

SEC:

Size exclusion chromatography

EDS:

Energy dispersive spectrometer

References

  • Barner L, Davis TP, Stenzel MH, Barner-Kowollik C (2007) Complex macromolecular architectures by reversible addition fragmentation chain transfer chemistry: theory and practice. Macromol Rapid Commun 28:539–559

    Article  CAS  Google Scholar 

  • Barsbay M, Güven O, Stenzel MH, Davis TP, Barner-Kowollik C, Barner L (2007) Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40:7140–7147

    Article  CAS  Google Scholar 

  • Biermann CJ, Chung JB, Narayan R (1987) Grafting of polystyrene onto cellulose acetate by nucleophilic displacement of mesylate groups using the polystyrylcarboxylate anion. Macromolecules 20:954–957

    Article  CAS  Google Scholar 

  • Brant DA, Goebel KD (1972) Evidence for the occurrence of flexible sugar ring conformers in cellulosic chains. Macromolecules 5:536–538

    Article  CAS  Google Scholar 

  • Carlmark A, Malmström EE (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901

    Article  CAS  Google Scholar 

  • Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4:1740–1745

    Article  CAS  Google Scholar 

  • Castelvetro V, Geppi M, Giaiacopi S, Mollica G (2007) Cotton fibers encapsulated with homo and block copolymers: synthesis by the atom transfer radical polymerization grafting-from technique and solid-state NMR dynamic investigations. Biomacromolecules 8:498–508

    Article  CAS  Google Scholar 

  • Chong YK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH (2003) Thiocarbonylthio compounds [S = C(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT Polymerization). Role of the free radical leaving group (R). Macromolecules 36:2256–2272

    Article  CAS  Google Scholar 

  • Daly WH, Evenson TS, Iacono ST, Walker Jones R (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–164

    Article  CAS  Google Scholar 

  • Favier A, Charreyre MT (2006) Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process. Macromol Rapid Commun 27:653–692

    Article  CAS  Google Scholar 

  • Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers of toughening green composites-effect of load application during mercerization of ramie fibers. Compos Part A 37:2213–2220

    Article  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Koenig SH, Roberts CW (1974) Vinylbenzyl ethers of cellulose. Preparation and polymerization. J Appl Polym Sci 18:651–666

    Article  CAS  Google Scholar 

  • Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882

    Article  CAS  Google Scholar 

  • Liu ZT, Fan XS, Wu J, Zhang LL, Song LP, Gao ZW, Dong WS, Xiong HP, Peng YD, Tang SW (2007a) A green route to prepare cellulose acetate particle from ramie fiber. React Funct Polym 67:104–112

    Article  CAS  Google Scholar 

  • Liu ZT, Yang YN, Zhang LL, Liu ZW, Xiong HP (2007b) Study on the cationic modification and dyeing of ramie fiber. Cellulose 14:337–345

    Article  CAS  Google Scholar 

  • Liu ZT, Sun CA, Liu ZW, Lu J (2008) Adjustable wettability of methyl methacrylate modified ramie fiber. J Appl Polym Sci 109:2888–2894

    Article  CAS  Google Scholar 

  • Månsson P, Westfelt L (1981) Grafting of monodisperse low-molecular-weight polystyrene onto cellulose acetate. J Polym Sci Part A Polym Chem 19:1509–1515

    Article  Google Scholar 

  • Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410

    Article  CAS  Google Scholar 

  • Moad G, Rizzardo E, Thang SH (2006) Living radical polymerization by the RAFT process-A first update. Aust J Chem 59:669–692

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8:313–344

    Article  CAS  Google Scholar 

  • Perrier S, Takolpuckdee P (2005) Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J Polym Sci Part A Polym Chem 43:5347–5393

    Article  CAS  Google Scholar 

  • Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37:2709–2717

    Article  CAS  Google Scholar 

  • Plackett D, Jankova K, Egsgaard H, Hvilsted S (2005) Modification of jute fibers with polystyrene via atom transfer radical polymerization. Biomacromolecules 6:2474–2484

    Article  CAS  Google Scholar 

  • Román-Aguirre M, Márquez-Lucero A, Zaragoza-Contreras EA (2004) Elucidating the graft copolymerization of methyl methacrylate onto wood-fiber. Carbohydr Polym 55:201–210

    Article  Google Scholar 

  • Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372

    Article  CAS  Google Scholar 

  • Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9:91–99

    Article  CAS  Google Scholar 

  • Tsubokawa N, Iida T, Takayama T (2000) Modification of cellulose powder surface by grafting of polymers with controlled molecular weight and narrow molecular weight distribution. J Appl Polym Sci 75:515–522

    Article  CAS  Google Scholar 

  • Waly A, Abdel-Mohdy FA, Aly AS, Hebeish A (1998) Synthesis and characterization of cellulose ion exchanger. II. Pilot scale and utilization in dye-heavy metal removal. J Appl Polym Sci 68:2151–2157

    Article  CAS  Google Scholar 

  • Zhou Q, Greffe L, Baumann MJ, Malmström E, Teeri TT, Brumer H (2005) Use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces: a general route for the design of biocomposites. Macromolecules 38:3547–3549

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Specialized Research Fund for the Doctoral Program of Higher Education (20070718003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Tie Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Yi, J., Sun, P. et al. Grafting from ramie fiber with poly(MMA) or poly(MA) via reversible addition-fragmentation chain transfer polymerization. Cellulose 16, 1133–1145 (2009). https://doi.org/10.1007/s10570-009-9343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9343-8

Keywords

Navigation