, Volume 16, Issue 4, pp 729–741 | Cite as

Utilization and transport of l-arabinose by non-Saccharomyces yeasts

  • Eric P. Knoshaug
  • Mary Ann Franden
  • Boris U. Stambuk
  • Min Zhang
  • Arjun Singh


l-Arabinose is one of the sugars found in hemicellulose, a major component of plant cell walls. The ability to convert l-arabinose to ethanol would improve the economics of biomass to ethanol fermentations. One of the limitations for l-arabinose fermentation in the current engineered Saccharomyces cerevisiae strains is poor transport of the sugar. To better understand l-arabinose transport and use in yeasts and to identify a source for efficient l-arabinose transporters, 165 non-Saccharomyces yeast strains were studied. These yeast strains were arranged into six groups based on the minimum time required to utilize 20 g/L of l-arabinose. Initial transport rates of l-arabinose were determined for several species and a more comprehensive transport study was done in four selected species. Detailed transport kinetics in Arxula adeninivorans suggested both low and high affinity components while Debaryomyces hansenii var. fabryii, Kluyveromyces marxianus and Pichia guilliermondii possessed a single component, high affinity active transport systems.


Non-conventional yeast l-Arabinose utilization Sugar transport Mutagenesis 



This work was funded by the United States Department of Energy’s Office of the Biomass Program, the Corn Refiners Association, and the National Corn Growers Association. We thank C. Kurtzman for providing some of the strains used in this study.


  1. Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification. Cambridge University Press, CambridgeGoogle Scholar
  2. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150. doi: 10.1128/AEM.69.7.4144-4150.2003 CrossRefGoogle Scholar
  3. Carvalheiro F, Duarte LC, Medeiros R et al (2004) Optimization of brewery’s spent grain dilute-acid hydrolysis for the production of pentose-rich culture media. Appl Biochem Biotechnol 113–116:1059–1072. doi: 10.1385/ABAB:115:1-3:1059 CrossRefGoogle Scholar
  4. Chiang C, Knight SG (1960) A new pathway of pentose metabolism. Biochem Biophys Res Commun 3:554–559. doi: 10.1016/0006-291X(60)90174-1 CrossRefGoogle Scholar
  5. Cirillo VP (1968) Galactose Transport in Saccharomyces cerevisiae I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. J Bacteriol 95:1727–1731Google Scholar
  6. Corredor M, Davila AM, Casaregola S et al (2003) Chromosomal polymorphism in the yeast species Debaryomyces hansenii. Antonie Van Leeuwenhoek 84:81–88. doi: 10.1023/A:1025432721866 CrossRefGoogle Scholar
  7. Dien BS, Kurtzman CP, Saha BC et al (1996) Screening for l-arabinose fermenting yeasts. Appl Biochem Biotechnol 57/58:233–242. doi: 10.1007/BF02941704 CrossRefGoogle Scholar
  8. Eliasson A, Christensson C, Wahlbom CF et al (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386. doi: 10.1128/AEM.66.8.3381-3386.2000 CrossRefGoogle Scholar
  9. Fonseca C, Romao R, de Sousa HR et al (2007) l-Arabinose transport and catabolism in yeast. FEBS J 274:3589–3600. doi: 10.1111/j.1742-4658.2007.05892.x CrossRefGoogle Scholar
  10. Gardonyi M, Jeppsson M, Liden G et al (2003) Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 82:818–824. doi: 10.1002/bit.10631 CrossRefGoogle Scholar
  11. Han NS, Robyt JF (1998) Separation and detection of sugars and alditols on thin layer chromatograms. Carbohydr Res 313:135–137. doi: 10.1016/S0008-6215(98)00250-X CrossRefGoogle Scholar
  12. Jefferies TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509. doi: 10.1007/s00253-003-1450-0 CrossRefGoogle Scholar
  13. Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368. doi: 10.1002/yea.1216 CrossRefGoogle Scholar
  14. Karhumaa K, Wiedemann B, Hahn-Hagerdal B et al (2006) Co-utilization of l-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5:18. doi: 10.1186/1475-2859-5-18 CrossRefGoogle Scholar
  15. Kou SC, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol 103:671–678Google Scholar
  16. Kurtzman CP, Dien BS (1998) Candida arabinofermentans, a new l-arabinose fermenting yeast. Antonie Van Leeuwenhoek 74:237–243. doi: 10.1023/A:1001799607871 CrossRefGoogle Scholar
  17. Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223Google Scholar
  18. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642. doi: 10.1007/s00253-005-0229-x CrossRefGoogle Scholar
  19. Lucas C, van Uden N (1986) Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol 23:491–495. doi: 10.1007/BF02346066 CrossRefGoogle Scholar
  20. Palmarola-Adrados B, Choteborska P, Galbe M et al (2005) Ethanol production from non-starch carbohydrates of wheat bran. Bioresour Technol 96:843–850. doi: 10.1016/j.biortech.2004.07.004 CrossRefGoogle Scholar
  21. Park NH, Yoshida S, Takakashi A et al (2001) A new method for the preparation of crystalline l-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast. Biotechnol Lett 23:411–416. doi: 10.1023/A:1005681032082 CrossRefGoogle Scholar
  22. Pitkanen JP, Aristidou A, Salusjarvi L et al (2003) Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng 5:16–31. doi: 10.1016/S1096-7176(02)00012-5 CrossRefGoogle Scholar
  23. Richard P, Verho R, Putkonen M et al (2003) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res 3:185–189. doi: 10.1016/S1567-1356(02)00184-8 CrossRefGoogle Scholar
  24. Stambuk BU, Franden MA, Singh A et al (2003) d-Xylose transport by Candida succiphila and Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:255–263. doi: 10.1385/ABAB:106:1-3:255 CrossRefGoogle Scholar
  25. Sturgeon RJ (1984) Arabinose. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. Verlag Chemie, Weinheim, pp 427–431Google Scholar
  26. Sulbaran-de-Ferrer B, Aristiguieta M, Dale BE et al (2003) Enzymatic hydrolysis of ammonia-treated rice straw. Appl Biochem Biotechnol 105–108:155–164. doi: 10.1385/ABAB:105:1-3:155 CrossRefGoogle Scholar
  27. van de Vondervoort PJI, de Groot MJL, Ruijter GJG et al (2006) Selection and characterisation of a xylitol-derepressed Aspergillus niger mutant that is apparently impaired in xylitol transport. Appl Microbiol Biotechnol 73:881–886. doi: 10.1007/s00253-006-0527-y CrossRefGoogle Scholar
  28. van Maris AJA, Abbott DA, Bellissimi E et al (2006) Alcoholic fermentation of carbon source in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90:391–418. doi: 10.1007/s10482-006-9085-7 CrossRefGoogle Scholar
  29. van Zyl WH, Eliasson A, Hobley T et al (1999) Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Appl Microbiol Biotechnol 52:829–833. doi: 10.1007/s002530051599 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B. V. 2009

Authors and Affiliations

  • Eric P. Knoshaug
    • 1
  • Mary Ann Franden
    • 1
  • Boris U. Stambuk
    • 1
    • 2
  • Min Zhang
    • 1
  • Arjun Singh
    • 1
  1. 1.National Bioenergy CenterNational Renewable Energy LaboratoryGoldenUSA
  2. 2.Departamento de Bioquímica, Centro de Ciências BiológicasUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations