Skip to main content
Log in

Utilization and transport of l-arabinose by non-Saccharomyces yeasts

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

l-Arabinose is one of the sugars found in hemicellulose, a major component of plant cell walls. The ability to convert l-arabinose to ethanol would improve the economics of biomass to ethanol fermentations. One of the limitations for l-arabinose fermentation in the current engineered Saccharomyces cerevisiae strains is poor transport of the sugar. To better understand l-arabinose transport and use in yeasts and to identify a source for efficient l-arabinose transporters, 165 non-Saccharomyces yeast strains were studied. These yeast strains were arranged into six groups based on the minimum time required to utilize 20 g/L of l-arabinose. Initial transport rates of l-arabinose were determined for several species and a more comprehensive transport study was done in four selected species. Detailed transport kinetics in Arxula adeninivorans suggested both low and high affinity components while Debaryomyces hansenii var. fabryii, Kluyveromyces marxianus and Pichia guilliermondii possessed a single component, high affinity active transport systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification. Cambridge University Press, Cambridge

    Google Scholar 

  • Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150. doi:10.1128/AEM.69.7.4144-4150.2003

    Article  CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Medeiros R et al (2004) Optimization of brewery’s spent grain dilute-acid hydrolysis for the production of pentose-rich culture media. Appl Biochem Biotechnol 113–116:1059–1072. doi:10.1385/ABAB:115:1-3:1059

    Article  Google Scholar 

  • Chiang C, Knight SG (1960) A new pathway of pentose metabolism. Biochem Biophys Res Commun 3:554–559. doi:10.1016/0006-291X(60)90174-1

    Article  CAS  Google Scholar 

  • Cirillo VP (1968) Galactose Transport in Saccharomyces cerevisiae I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. J Bacteriol 95:1727–1731

    CAS  Google Scholar 

  • Corredor M, Davila AM, Casaregola S et al (2003) Chromosomal polymorphism in the yeast species Debaryomyces hansenii. Antonie Van Leeuwenhoek 84:81–88. doi:10.1023/A:1025432721866

    Article  CAS  Google Scholar 

  • Dien BS, Kurtzman CP, Saha BC et al (1996) Screening for l-arabinose fermenting yeasts. Appl Biochem Biotechnol 57/58:233–242. doi:10.1007/BF02941704

    Article  CAS  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF et al (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386. doi:10.1128/AEM.66.8.3381-3386.2000

    Article  CAS  Google Scholar 

  • Fonseca C, Romao R, de Sousa HR et al (2007) l-Arabinose transport and catabolism in yeast. FEBS J 274:3589–3600. doi:10.1111/j.1742-4658.2007.05892.x

    Article  CAS  Google Scholar 

  • Gardonyi M, Jeppsson M, Liden G et al (2003) Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 82:818–824. doi:10.1002/bit.10631

    Article  CAS  Google Scholar 

  • Han NS, Robyt JF (1998) Separation and detection of sugars and alditols on thin layer chromatograms. Carbohydr Res 313:135–137. doi:10.1016/S0008-6215(98)00250-X

    Article  CAS  Google Scholar 

  • Jefferies TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509. doi:10.1007/s00253-003-1450-0

    Article  CAS  Google Scholar 

  • Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368. doi:10.1002/yea.1216

    Article  CAS  Google Scholar 

  • Karhumaa K, Wiedemann B, Hahn-Hagerdal B et al (2006) Co-utilization of l-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5:18. doi:10.1186/1475-2859-5-18

    Article  CAS  Google Scholar 

  • Kou SC, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol 103:671–678

    CAS  Google Scholar 

  • Kurtzman CP, Dien BS (1998) Candida arabinofermentans, a new l-arabinose fermenting yeast. Antonie Van Leeuwenhoek 74:237–243. doi:10.1023/A:1001799607871

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223

    CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642. doi:10.1007/s00253-005-0229-x

    Article  CAS  Google Scholar 

  • Lucas C, van Uden N (1986) Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol 23:491–495. doi:10.1007/BF02346066

    Article  CAS  Google Scholar 

  • Palmarola-Adrados B, Choteborska P, Galbe M et al (2005) Ethanol production from non-starch carbohydrates of wheat bran. Bioresour Technol 96:843–850. doi:10.1016/j.biortech.2004.07.004

    Article  CAS  Google Scholar 

  • Park NH, Yoshida S, Takakashi A et al (2001) A new method for the preparation of crystalline l-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast. Biotechnol Lett 23:411–416. doi:10.1023/A:1005681032082

    Article  CAS  Google Scholar 

  • Pitkanen JP, Aristidou A, Salusjarvi L et al (2003) Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng 5:16–31. doi:10.1016/S1096-7176(02)00012-5

    Article  CAS  Google Scholar 

  • Richard P, Verho R, Putkonen M et al (2003) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res 3:185–189. doi:10.1016/S1567-1356(02)00184-8

    Article  CAS  Google Scholar 

  • Stambuk BU, Franden MA, Singh A et al (2003) d-Xylose transport by Candida succiphila and Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:255–263. doi:10.1385/ABAB:106:1-3:255

    Article  Google Scholar 

  • Sturgeon RJ (1984) Arabinose. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. Verlag Chemie, Weinheim, pp 427–431

    Google Scholar 

  • Sulbaran-de-Ferrer B, Aristiguieta M, Dale BE et al (2003) Enzymatic hydrolysis of ammonia-treated rice straw. Appl Biochem Biotechnol 105–108:155–164. doi:10.1385/ABAB:105:1-3:155

    Article  Google Scholar 

  • van de Vondervoort PJI, de Groot MJL, Ruijter GJG et al (2006) Selection and characterisation of a xylitol-derepressed Aspergillus niger mutant that is apparently impaired in xylitol transport. Appl Microbiol Biotechnol 73:881–886. doi:10.1007/s00253-006-0527-y

    Article  CAS  Google Scholar 

  • van Maris AJA, Abbott DA, Bellissimi E et al (2006) Alcoholic fermentation of carbon source in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90:391–418. doi:10.1007/s10482-006-9085-7

    Article  CAS  Google Scholar 

  • van Zyl WH, Eliasson A, Hobley T et al (1999) Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Appl Microbiol Biotechnol 52:829–833. doi:10.1007/s002530051599

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the United States Department of Energy’s Office of the Biomass Program, the Corn Refiners Association, and the National Corn Growers Association. We thank C. Kurtzman for providing some of the strains used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Knoshaug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoshaug, E.P., Franden, M.A., Stambuk, B.U. et al. Utilization and transport of l-arabinose by non-Saccharomyces yeasts. Cellulose 16, 729–741 (2009). https://doi.org/10.1007/s10570-009-9319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9319-8

Keywords

Navigation