, Volume 16, Issue 3, pp 417–426 | Cite as

Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions

  • Romain Sescousse
  • Tatiana Budtova


The kinetics of cellulose regeneration in acetic acid bath from cellulose–8% NaOH–water solutions and gels is studied as a function of gelation conditions, acid concentration and bath temperature. The diffusion coefficient of NaOH from cellulose solution or gel into regenerating bath was calculated. It does not depend either on gelation mode or on acid concentration. On the contrary, cellulose regeneration from non-gelled solutions is slower than from a gel. The increase in bath temperature induces diffusion coefficient increase obeying Arrhenius law. Scanning electron microscopy images of regenerated swollen-in-water freeze-dried cellulose and of the same samples dried in supercritical CO2 show highly porous morphology.


Cellulose Gelation Regeneration Diffusion Cellulose–NaOH solution Morphology Supercritical drying Freeze-drying 



This work was supported by ANR (France), project N ANR-06-MAPR-0004. Authors are grateful to S. Fabry-Berthon, A. Rigacci and P. Ilbizian (CEP, Mines ParisTech, Sophia-Antipolis, France) for supercritical drying, to S. Rousselle (University of Nice-Sophia-Antipolis, France) for the help in diffusion coefficient measurements and to P. Navard (CEMEF, Mines ParisTech, Sophia-Antipolis, France) for fruitful discussions.


  1. Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382–8395. doi: 10.1021/ma980765f CrossRefGoogle Scholar
  2. Cai J, Wang L, Zhang L (2007a) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH-urea aqueous solution. Cellulose 14:205–215. doi: 10.1007/s10570-007-9106-3 CrossRefGoogle Scholar
  3. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007b) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825. doi: 10.1002/adma.200601521 CrossRefGoogle Scholar
  4. Cao Y, Tan H (2006) Preparation and properties of microporous cellulose membranes from novel cellulose/aqueous sodium hydroxide solutions. J Appl Polym Sci 102:920–926. doi: 10.1002/app.23937 CrossRefGoogle Scholar
  5. Chen Y, Zhang L, Gu J, Liu J (2004) Physical properties of microporous membranes prepared by hydrolyzing cellulose/soy protein blends. J Membr Sci 241:393–402. doi: 10.1016/j.memsci.2004.06.009 CrossRefGoogle Scholar
  6. Chen X, Burger C, Fang D, Ruan D, Zjang L, Hsiao BS, Chu B (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer (Guildf) 47:2839–2848. doi: 10.1016/j.polymer.2006.02.044 CrossRefGoogle Scholar
  7. Chen X, Burger C, Wan F, Znahg J, Rong L, Hsiao BS, Cai J, Zhang L (2007) Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions. Biomacromolecules 8:1918–1926. doi: 10.1021/bm061186i CrossRefGoogle Scholar
  8. Egal M (2006) Structure and properties of cellulose/NaOH aqueous solutions, gels and regenerated objects. PhD thesis, Ecole des Mines de Paris/Cemef, Sophia-AntipolisGoogle Scholar
  9. Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 degrees C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287. doi: 10.1021/bm0702399 CrossRefGoogle Scholar
  10. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer (Guildf) 47:7636–7645. doi: 10.1016/j.polymer.2006.09.004 CrossRefGoogle Scholar
  11. Gavillon R (2007) Preparation et caractérisation de matériaux cellulosiques ultra poreux. PhD thesis, Ecole des Mines de Paris/Cemef, Sophia-AntipolisGoogle Scholar
  12. Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose–NaOH–water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432. doi: 10.1021/bm060376q CrossRefGoogle Scholar
  13. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277. doi: 10.1021/bm700972k CrossRefGoogle Scholar
  14. Isogai A (1997) NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 4:99–107. doi: 10.1023/A:1018471419692 CrossRefGoogle Scholar
  15. Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319. doi: 10.1023/A:1009272632367 CrossRefGoogle Scholar
  16. Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids and surfaces A. Physicochem Eng Aspects 240:63–67. doi: 10.1016/j.colsurfa.2004.03.007 CrossRefGoogle Scholar
  17. Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res 342:851–858. doi: 10.1016/j.carres.2006.12.023 CrossRefGoogle Scholar
  18. Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and C-13 NMR. Polym J 16:857–866. doi: 10.1295/polymj.16.857 CrossRefGoogle Scholar
  19. Kistler S (1932) Coherent expanded aerogels. J Phys Chem 36:52–64. doi: 10.1021/j150331a003 CrossRefGoogle Scholar
  20. Kunze J, Fink HP (2005) Structural changes and activation of cellulose by caustic soda solution with urea. Macromol Symp 223:175–187. doi: 10.1002/masy.200550512 CrossRefGoogle Scholar
  21. Kuo YN, Hong J (2005) A new method for cellulose membrane fabrication and the determination of its characteristics. J Colloid Interface Sci 285:232–238. doi: 10.1016/j.jcis.2004.10.043 CrossRefGoogle Scholar
  22. Laszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876. doi 10.1002/(SICI)1097-4628(19980314)67:11<1871::AID-APP5>3.0.CO;2-I:CrossRefGoogle Scholar
  23. Matsui T, Sano T, Yamane C, Kamide K, Okajima K (1995) Structure and morphology of cellulose films coagulated from novel cellulose/aqueous sodium-hydroxide solutions by using aqueous sulfuric-acid with various concentrations. Polym J 27:797–812. doi: 10.1295/polymj.27.797 CrossRefGoogle Scholar
  24. Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose–NaOH solutions. Biomacromolecules 4:259–264. doi: 10.1021/bm020100s CrossRefGoogle Scholar
  25. Ruan D, Zhang L, Zhou J, Jin H, Chen H (2004) Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol Biosci 4:1105–1112. doi: 10.1002/mabi.200400120 CrossRefGoogle Scholar
  26. Ruan D, Zhang L, Lue A (2006) A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system. Macromol Rapid Commun 27:1495–1500. doi: 10.1002/marc.200600232 CrossRefGoogle Scholar
  27. Tan C, Fung B, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646. doi: 10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-# CrossRefGoogle Scholar
  28. Yamashiki T, Kamide K, Okajima K, Kowsaka K, Matsui T, Fukas H (1988) Some characteristic features of dilute aqueous alkali solutions of specific alkali concentration (2.5 mol L−1) which possess maximum solubility power against cellulose. Polym J 20:447–457. doi: 10.1295/polymj.20.447 CrossRefGoogle Scholar
  29. Yang G, Miyamoto H, Yamane C, Okajima K (2007) Structure of regenerated cellulose films from cellulose/aqueous NaOH solution as a function of coagulation conditions. Polym J 39:34–40. doi: 10.1295/polymj.PJ2006025 CrossRefGoogle Scholar
  30. Zhang L, Du Y (2002) Morphology and properties of cellulose/chitin blends membranes from NaOH/thiourea aqueous solution. J Appl Polym Sci 86:2025–2032. doi: 10.1002/app.11156 CrossRefGoogle Scholar
  31. Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Part Polym Phys 40:1521–1529. doi: 10.1002/polb.10215 CrossRefGoogle Scholar
  32. Zhou J, Zhang L (2000) Solubility of cellulose in NaOH urea aqueous solution. Polym J 32:866–870. doi: 10.1295/polymj.32.866 CrossRefGoogle Scholar
  33. Zhou J, Zhang L, Cai J, Shu H (2002) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Membr Sci 210:77–90. doi: 10.1016/S0376-7388(02)00377-0 CrossRefGoogle Scholar
  34. Zhou J, Zhang L, Cai J (2004) Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry. J Polym Sci Part Polym Phys 42:347–353. doi: 10.1002/polb.10636 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Mines ParisTech, Centre de Mise en Forme des Matèriaux, CEMEFUMR CNRS/Ecole des Mines de Paris 7635Sophia-AntipolisFrance

Personalised recommendations