Skip to main content
Log in

Dyeing behaviour of lyocell fabric: effect of NaOH pre-treatment

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To understand the effect of alkali pre-treatment on the dyeing of lyocell fabrics, samples are pre-treated with 0.0–7.0 mol dm−3 NaOH using a pad-batch process and then dyed with different types of reactive dyes. Exhaustion, fixation, and visual colour strength (K/S values) are measured. It is observed that sodium hydroxide pre-treatment significantly improves the colour yield, exhaustion, and fixation for all dyes used. Highest K/S values are obtained when the fabrics are pre-treated with 2.0–2.5 mol dm−3 NaOH. Cross-sectional analysis shows that below this optimum concentration the core fibres in the yarn are not dyed; at optimum concentration all fibres in yarn cross-section are homogeneously dyed. Cross-sectional analysis shows that as the pre-treatment concentration of NaOH increases above 2.5 mol dm−3, the fibres change progressively from a circular to angular cross-section, forming a solid unit. The decrease in K/S above the treatment concentration of 2.5 mol dm−3, though the %E and %F remains almost constant, is attributed to the distribution of dye over a larger surface area of the outer fibres in the yarn cross section, forcing the K/S at λmax to decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah I, Blackburn RS, Russell SJ, Taylor J (2006) Abrasion phenomena in twill tencel fabric. J Appl Polym Sci 102:1391–1398. doi:10.1002/app.24195

    Article  CAS  Google Scholar 

  • Albrecht W, Reintjes M, Wulfhorst B (1997) Lyocell fibers. Chem Fibers Int 47:298–304

    Google Scholar 

  • Bates I, Mauchru E, Phillips DAS, Renfrew AHM, Su Y, Xu J (2004) Cross-linking agents for the protection of lyocell against fibrillation: synthesis, application and technical assessment of 2,4-diacrylamidobenzenesulphonic acid. Color Technol 120:293–300. doi:10.1111/j.1478-4408.2004.tb00233.x

    Article  CAS  Google Scholar 

  • Bui HM, Lenninger M, Manian AP, Abu-Rous M, Schimper CB, Schuster KC, Bechtold T (2008) Treatment in swelling solutions modifying cellulose fiber reactivity—part 2 accessibility reactivity. Macromol Symp 262:50–64

    Article  CAS  Google Scholar 

  • Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234. doi:10.1016/j.eurpolymj.2004.05.003

    Article  CAS  Google Scholar 

  • Chae DW, Chae HG, Kim BC, Oh YS, Jo SM, Lee WS (2002) Physical properties of lyocell fibers spun from isotropic cellulose dope in NMMO monohydrate. Text Res J 72:335–340. doi:10.1177/004051750207200410

    Article  CAS  Google Scholar 

  • Chavan RB, Patra AK (2004) Development and processing of lyocell. Indian J Fibre Text Res 29:483–492

    CAS  Google Scholar 

  • Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230. doi:10.1016/S0014-3057(02)00132-5

    Article  CAS  Google Scholar 

  • Goswami P, Blackburn RS, Taylor J, Westland S, White P (2007) Dyeing behav lyocell fabric effect fibrillation. Color Technol 123:387–393

    Article  CAS  Google Scholar 

  • Goswami P, Blackburn RS, El-Dessouky HM, Taylor J, White P (2009) Effects of sodium hydroxide pre-treatment on the optical and structural properties of lyocell. Eur Polym J 45:455–465. doi:10.1016/j.eurpolymj.2008.10.030

    Article  CAS  Google Scholar 

  • Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: functionalisation of cellulose. Wiley-VCH, Weinheim

    Google Scholar 

  • Jaturapiree A, Manian AP, Bechtold T (2006) Sorption studies on regenerated cellulosic fibers in salt-alkali mixtures. Cellulose 13:647–654. doi:10.1007/s10570-006-9069-9

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:2–37. doi:10.1002/anie.200460587

    Article  Google Scholar 

  • Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulosic fibers. Text Res J 73:675–684. doi:10.1177/004051750307300804

    Article  CAS  Google Scholar 

  • Lennox-Kerr P (1994) Natural fibres and composites. Tech Text Int 3(July/August):18–19

    Google Scholar 

  • Lenz J, Schurz J, Wrentscur E (1993) Properties and structure of solvent-spun and viscose-type fibres in the swollen state. Colloid Polym Sci 271:460–468. doi:10.1007/BF00657390

    Article  CAS  Google Scholar 

  • Loubinoux D, Chaunis S (1987) An experimental approach to spinning new cellulose fibers with N-methylmorpholine-oxide as a solvent. Text Res J 57:61–65. doi:10.1177/004051758705700201

    Article  CAS  Google Scholar 

  • Manian AP, Abu-Rous M, Lenninger M, Roeder T, Schuster KC, Bechtold T (2008) The influence of alkali pretreatments in lyocell resin finishing—fiber structure. Carbohydr Polym 71:664–671. doi:10.1016/j.carbpol.2007.07.020

    Article  CAS  Google Scholar 

  • McDonald R (1980) Industrial pass-fail color matching. 3. Development of a pass-fail formula for use with instrumental measurement of color difference. J Soc Dyers Col 96:486–496

    Google Scholar 

  • Mortimer SA, Peguy AA (1996) The formation of structure in the spinning and coagulation of lyocell fibres. Cellulose Chem Technol 30:117–132

    CAS  Google Scholar 

  • Schuster KC, Rohrer C, Eichinger D, Schmidtbauer J, Aldred P, Firgo H (2004) In: Wallenberger FT (ed) Natural fibres, plastics and composites. Kluwer Academic Publishers, London

    Google Scholar 

  • White P, Hayhurst M, Taylor J, Slater A (2005) In: Blackburn RS (ed) Biodegradable and sustainable fibres. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  • Woodings CR (1995) The development of advanced cellulosic fibres. Int J Biol Macromol 17:305–309. doi:10.1016/0141-8130(96)81836-8

    Article  CAS  Google Scholar 

  • Zhang WS, Okubayashi S, Bechtold T (2005) Fibrillation tendency of cellulosic fibers. Part 1: effects of swelling. Cellulose 12:267–273. doi:10.1007/s10570-004-2786-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lenzing AG and The UK Government (Overseas Research Scholarship Awards Scheme) for the provision of a PhD scholarship to Mr. Goswami.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Blackburn.

Additional information

This paper was presented at the 2nd International Cellulose Conference, Tokyo, Japan, 24th October 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goswami, P., Blackburn, R.S., Taylor, J. et al. Dyeing behaviour of lyocell fabric: effect of NaOH pre-treatment. Cellulose 16, 481–489 (2009). https://doi.org/10.1007/s10570-009-9279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9279-z

Keywords

Navigation