, Volume 16, Issue 3, pp 481–489 | Cite as

Dyeing behaviour of lyocell fabric: effect of NaOH pre-treatment

  • Parikshit Goswami
  • Richard S. Blackburn
  • Jim Taylor
  • Patrick White


To understand the effect of alkali pre-treatment on the dyeing of lyocell fabrics, samples are pre-treated with 0.0–7.0 mol dm−3 NaOH using a pad-batch process and then dyed with different types of reactive dyes. Exhaustion, fixation, and visual colour strength (K/S values) are measured. It is observed that sodium hydroxide pre-treatment significantly improves the colour yield, exhaustion, and fixation for all dyes used. Highest K/S values are obtained when the fabrics are pre-treated with 2.0–2.5 mol dm−3 NaOH. Cross-sectional analysis shows that below this optimum concentration the core fibres in the yarn are not dyed; at optimum concentration all fibres in yarn cross-section are homogeneously dyed. Cross-sectional analysis shows that as the pre-treatment concentration of NaOH increases above 2.5 mol dm−3, the fibres change progressively from a circular to angular cross-section, forming a solid unit. The decrease in K/S above the treatment concentration of 2.5 mol dm−3, though the %E and %F remains almost constant, is attributed to the distribution of dye over a larger surface area of the outer fibres in the yarn cross section, forcing the K/S at λmax to decrease.


Regenerated cellulose Cellulose II Sodium hydroxide Swelling Reactive dyes Diffusion Morphology 



The authors would like to thank Lenzing AG and The UK Government (Overseas Research Scholarship Awards Scheme) for the provision of a PhD scholarship to Mr. Goswami.


  1. Abdullah I, Blackburn RS, Russell SJ, Taylor J (2006) Abrasion phenomena in twill tencel fabric. J Appl Polym Sci 102:1391–1398. doi: 10.1002/app.24195 CrossRefGoogle Scholar
  2. Albrecht W, Reintjes M, Wulfhorst B (1997) Lyocell fibers. Chem Fibers Int 47:298–304Google Scholar
  3. Bates I, Mauchru E, Phillips DAS, Renfrew AHM, Su Y, Xu J (2004) Cross-linking agents for the protection of lyocell against fibrillation: synthesis, application and technical assessment of 2,4-diacrylamidobenzenesulphonic acid. Color Technol 120:293–300. doi: 10.1111/j.1478-4408.2004.tb00233.x CrossRefGoogle Scholar
  4. Bui HM, Lenninger M, Manian AP, Abu-Rous M, Schimper CB, Schuster KC, Bechtold T (2008) Treatment in swelling solutions modifying cellulose fiber reactivity—part 2 accessibility reactivity. Macromol Symp 262:50–64CrossRefGoogle Scholar
  5. Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234. doi: 10.1016/j.eurpolymj.2004.05.003 CrossRefGoogle Scholar
  6. Chae DW, Chae HG, Kim BC, Oh YS, Jo SM, Lee WS (2002) Physical properties of lyocell fibers spun from isotropic cellulose dope in NMMO monohydrate. Text Res J 72:335–340. doi: 10.1177/004051750207200410 CrossRefGoogle Scholar
  7. Chavan RB, Patra AK (2004) Development and processing of lyocell. Indian J Fibre Text Res 29:483–492Google Scholar
  8. Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230. doi: 10.1016/S0014-3057(02)00132-5 CrossRefGoogle Scholar
  9. Goswami P, Blackburn RS, Taylor J, Westland S, White P (2007) Dyeing behav lyocell fabric effect fibrillation. Color Technol 123:387–393CrossRefGoogle Scholar
  10. Goswami P, Blackburn RS, El-Dessouky HM, Taylor J, White P (2009) Effects of sodium hydroxide pre-treatment on the optical and structural properties of lyocell. Eur Polym J 45:455–465. doi: 10.1016/j.eurpolymj.2008.10.030 CrossRefGoogle Scholar
  11. Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: functionalisation of cellulose. Wiley-VCH, WeinheimGoogle Scholar
  12. Jaturapiree A, Manian AP, Bechtold T (2006) Sorption studies on regenerated cellulosic fibers in salt-alkali mixtures. Cellulose 13:647–654. doi: 10.1007/s10570-006-9069-9 CrossRefGoogle Scholar
  13. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:2–37. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  14. Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulosic fibers. Text Res J 73:675–684. doi: 10.1177/004051750307300804 CrossRefGoogle Scholar
  15. Lennox-Kerr P (1994) Natural fibres and composites. Tech Text Int 3(July/August):18–19Google Scholar
  16. Lenz J, Schurz J, Wrentscur E (1993) Properties and structure of solvent-spun and viscose-type fibres in the swollen state. Colloid Polym Sci 271:460–468. doi: 10.1007/BF00657390 CrossRefGoogle Scholar
  17. Loubinoux D, Chaunis S (1987) An experimental approach to spinning new cellulose fibers with N-methylmorpholine-oxide as a solvent. Text Res J 57:61–65. doi: 10.1177/004051758705700201 CrossRefGoogle Scholar
  18. Manian AP, Abu-Rous M, Lenninger M, Roeder T, Schuster KC, Bechtold T (2008) The influence of alkali pretreatments in lyocell resin finishing—fiber structure. Carbohydr Polym 71:664–671. doi: 10.1016/j.carbpol.2007.07.020 CrossRefGoogle Scholar
  19. McDonald R (1980) Industrial pass-fail color matching. 3. Development of a pass-fail formula for use with instrumental measurement of color difference. J Soc Dyers Col 96:486–496Google Scholar
  20. Mortimer SA, Peguy AA (1996) The formation of structure in the spinning and coagulation of lyocell fibres. Cellulose Chem Technol 30:117–132Google Scholar
  21. Schuster KC, Rohrer C, Eichinger D, Schmidtbauer J, Aldred P, Firgo H (2004) In: Wallenberger FT (ed) Natural fibres, plastics and composites. Kluwer Academic Publishers, LondonGoogle Scholar
  22. White P, Hayhurst M, Taylor J, Slater A (2005) In: Blackburn RS (ed) Biodegradable and sustainable fibres. Woodhead Publishing Limited, CambridgeGoogle Scholar
  23. Woodings CR (1995) The development of advanced cellulosic fibres. Int J Biol Macromol 17:305–309. doi: 10.1016/0141-8130(96)81836-8 CrossRefGoogle Scholar
  24. Zhang WS, Okubayashi S, Bechtold T (2005) Fibrillation tendency of cellulosic fibers. Part 1: effects of swelling. Cellulose 12:267–273. doi: 10.1007/s10570-004-2786-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Parikshit Goswami
    • 1
  • Richard S. Blackburn
    • 1
  • Jim Taylor
    • 2
  • Patrick White
    • 2
  1. 1.Green Chemistry Group, Centre for Technical TextilesUniversity of LeedsLeedsUK
  2. 2.Lenzing FibersLenzingAustria

Personalised recommendations