, Volume 16, Issue 3, pp 501–517 | Cite as

Surface functionalization via in situ interaction of plasma-generated free radicals with stable precursor-molecules on cellulose

  • Alvaro de Jesús Martínez-Gómez
  • Sorin O. Manolache
  • Víctor Gónzalez-Álvarez
  • Raymond A. Young
  • Ferencz Sandor Denes


The surface functionalization process was accomplished in a consecutive 3 step process including: (1) Argon- and oxygen-plasma enhanced generation of free radical sites on cellophane surfaces; (2) “In situ” gas phase derivatization in the absence of plasma using hydrazine, ethylene diamine, or propylene diamine; (3) Second “in situ”, gas phase derivatization in the absence of plasma using oxallyl chloride or “ex situ” derivatization in the presence of glutaraldehyde. The presence of free radical sites on the plasma exposed cellophane surfaces was demonstrated using “in situ” sulfur dioxide and nitric oxide labeling techniques. It was shown that the free radical sites readily react under “in situ” conditions with the stable chain-precursor components and generate the desired spacer-chain molecules. ESCA, ATR-FTIR analysis and dying techniques were used to monitor the cellophane surface changes. A factorial design was used for selecting the optimal plasma parameters. Functionalized cellophane substrates were used for immobilization of α-chymotrypsin in the presence of spacer-chain molecules. The activity of the immobilized α-chymotrypsin was found to be lower in comparison to the activity of the free enzyme and the presence of virgin cellophane in the free enzyme solution also reduced significantly the activity of the enzyme. It is suggested that the swollen state of the cellophane plays a significant role in the decrease of the immobilized enzyme activity.


Plasma functionalization Cellophane α-Chymotrypsin immobilization Spacer-chain molecules Primary amine and carboxylic functionalities 



α-Chymotrypsin enzyme


Argon plasma-assisted


N-Acetyl-l-tyrosine ethyl ester


Attenuated total reflectance-Fourier transform infrared spectroscopy


Binding energy






Ethylene diamine


Electron spectroscopy for chemical analysis


4-(2-Hydroxyethyl)piperazine-1-propanesulfonic acid


Rate flow of argon (sccm)






High resolution


40 kHz power supplies


13.56 MHz power supplies


Nitrogen atomic concentration (%)


Oxalyl chloride


Oxygen plasma-assisted


Power (W)


Propylene diamine


Sodium 2, 4, 6-trinitrobenzenesulfonate


Treament time (min)


Take off angle


Radio frequency


  1. Beamson G, Briggs D (1992) High resolution XPS of organic polymers. The Scienta ESCA300 Database. Wiley, New YorkGoogle Scholar
  2. Bellamy LJ (1966) The infra-red spectra of complex molecules. Wiley, New York, p 205Google Scholar
  3. Carley JF, Kitze P (1980) Corona-discharge treatment of polymeric films, part II: chemical studies. Polym Eng Sci 20(5):330–338. doi: 10.1002/pen.760200504 CrossRefGoogle Scholar
  4. Chinn JA, Ratner BD, Horbett TA (1992) Adsorption of baboon fibrinogen and the adhesion of platelets to a thin film polymer deposited by radio-frequency glow discharge of allylamine. Biomaterials 13(5):322–332. doi: 10.1016/0142-9612(92)90057-U CrossRefGoogle Scholar
  5. Clark DT, Dilks A, Shuttleworth D (1978) The application of plasmas to the synthesis and surface modification of polymers. In: Clark DT, Feast WJ (eds) Polymer surfaces. Wiley, New York, pp 185–210Google Scholar
  6. Denes F (1997) Synthesis and surface modification by macromolecular plasma chemistry. Trends Polym Sci (Regul Ed) 5(1):23–31Google Scholar
  7. Denes F, Manolache S (2004) Macromolecular plasma-chemistry: an emerging field of polymer science. Prog Polym Sci 29(8):815–885. doi: 10.1016/j.progpolymsci.2004.05.001 CrossRefGoogle Scholar
  8. Denes F, Hua ZQ, Barrios E, Young RA (1995) Influence of RF-cold plasma treatment on the surface properties of paper. J Macromol Sci Part A Pure Appl Chem A32(8–9):1405–1443. doi: 10.1080/10601329508013689 Google Scholar
  9. Denes F, Manolache S, Young RA (1999) Synthesis and surface functionalization under cold-plasma conditions. J Photopolym Sci Technol 12(1):27–38. doi: 10.2494/photopolymer.12.27 CrossRefGoogle Scholar
  10. Ganapathy R, Wang X, Denes F, Sarmadi M (1996) Primary amine implantation onto polypropylene surfaces from melamine and urea RF plasmas. J Photopolym Sci Technol 9(2):181–200. doi: 10.2494/photopolymer.9.181 CrossRefGoogle Scholar
  11. Ganapathy R, Sarmadi M, Denes F (1998) Immobilization of α-chymotrypsin on oxygen-RF-plasma functionalized PET and PP surfaces. J Biomater Sci Polym Ed 9(4):389–404Google Scholar
  12. Ganapathy R, Manolache S, Sarmadi M, Simonsick WJ Jr, Denes F (2000) Immobilization of active α-chymotrypsin on RF-plasma-functionalized polymer surfaces. J Appl Polym Sci 78(10):1783–1796. doi:10.1002/1097-4628(20001205)78:10<1783::AID-APP100>3.0.CO;2-#CrossRefGoogle Scholar
  13. Girardeaux C, Zammatteo N, Art M, Gillon B, Pireaux JJ, Caudano R (1996) Amination of poly(ethylene-terephthalate) [PET] polymer surface for biochemical applications. Plasmas Polymers 1(4):327–344. doi: 10.1007/BF02532829 CrossRefGoogle Scholar
  14. Gombotz WR, Hoffman AS (1988) Functionalization of polymeric films by plasma polymerization of allyl alcohol and allylamine. J Appl Polym Sci: Appl Polym Symp 42 (Plasma Polym. Plasma Treat. Polym.):285–303Google Scholar
  15. Gombotz WR, Guanghui W, Hoffman AS (1989) Immobilization of poly(ethylene oxide) on poly(ethylene terephthalate) using a plasma polymerization process. J Appl Polym Sci 37(1):91–107. doi: 10.1002/app.1989.070370108 CrossRefGoogle Scholar
  16. Hermanson GT, Mallia AK, Smith PK (1992) Immobilized affinity ligand techniques. Academic Press, New York, pp 77–286Google Scholar
  17. Hollahan JR, Wydeven T (1973) Synthesis of reverse osmosis membranes by plasma polymerization of allylamine. Science 179:500–501. doi: 10.1126/science.179.4072.500 CrossRefGoogle Scholar
  18. Hollahan JR, Stafford BB, Falb RD, Payne ST (1969) Attachment of amino groups to polymer surfaces by radiofrequency plasmas. J Appl Polym Sci 13:807–816. doi: 10.1002/app.1969.070130419 CrossRefGoogle Scholar
  19. Holmes S, Schwartz P (1990) Amination of ultrahigh-strength polyethylene using ammonia plasma. Compos Sci Technol 38(1):1–21. doi: 10.1016/0266-3538(90)90068-G CrossRefGoogle Scholar
  20. Hon DNS, Feist WC (1993) Interaction of sulfur dioxide and nitric oxide with photoirradiated wood surfaces. Wood Sci Technol 25(2):136–141Google Scholar
  21. Hua ZQ, Sitaru R, Denes FS, Young RA (1997) Mechanism of oxygen-and argon-RF-plasma-induce surface chemistry of cellulose. Plasma Polym 2(3):199–233. doi: 10.1007/BF02766154 CrossRefGoogle Scholar
  22. Kerr JA (1973) Rate processes in the gas phase. In: Kochi JK (ed) Free radicals, vol 1. Wiley, London, pp 1–36Google Scholar
  23. Kuzuya M, Yamashiro T, Kondo S-I, Sugito M, Mouri M (1998a) Plasma-induced surface radicals of low-density polyethylene studied by electron spin resonance. Macromolecules 31(10):3225–3229. doi: 10.1021/ma9709361 CrossRefGoogle Scholar
  24. Kuzuya M, Kondo S-I, Sugito M, Yamashiro T (1998b) Peroxy radical formation from plasma-induced surface radicals of polyethylene as studied by electron spin resonance. Macromolecules 31(10):3230–3234. doi: 10.1021/ma970937t CrossRefGoogle Scholar
  25. Lub J, van Vroonhoven FCBM, Bruninx E, Benninghoven A (1989) Interaction of nitrogen and ammonia plasmas with polystyrene and polycarbonate studied by X-ray photoelectron spectroscopy, neutron activation analysis and static secondary-ion mass spectrometry. Polymer (Guildf) 30(1):40–44. doi: 10.1016/0032-3861(89)90380-7 CrossRefGoogle Scholar
  26. Martinez AJ, Manolache S, Gonzalez V, Young RA, Denes F (2000) Immobilized biomolecules on plasma functionalized cellophane, part I: covalently attached α-chymotrypsin. J Biomater Sci Polym Ed 11(4):415–438. doi: 10.1163/156856200743797 CrossRefGoogle Scholar
  27. Mitchell J Jr, Perkins LR (1967) Determination of hydroperoxide groups in oxidized polyethylene. Appl Polym Symp 4:167–173Google Scholar
  28. Peric D, Bell AT, Shen M (1977) Reverse osmosis characteristics of composite membranes prepared by plasma polymerization of allylamine, effects of deposition conditions. J Appl Polym Sci 21(10):2661–2673. doi: 10.1002/app.1977.070211008 CrossRefGoogle Scholar
  29. Ratner BD, Chilkoti A, Lopez GP (1990) Plasma deposition and treatment for biomaterial applications. In: d’Agostino R (ed) Plasma deposition, treatment, and etching of polymers. Academic Press, Inc., New York, pp 464–511Google Scholar
  30. Sakata J, Wada M (1988) Preparation of ion exchange membranes by plasma polymerization, I. J Appl Polym Sci 35(4):875–884. doi: 10.1002/app.1988.070350403 CrossRefGoogle Scholar
  31. Sarmadi M, Denes F (1996) Surface modification of polymers under cold plasma conditions. TAPPI J 79(8):189–204Google Scholar
  32. Shi FF (1996) Recent advances in polymer thin films prepared by plasma polymerization synthesis, structural characterization, properties and applications. Surf Coat Tech 82(1–2):1–15. doi: 10.1016/0257-8972(95)02621-5 CrossRefGoogle Scholar
  33. Tasker S, Badyal JPS, Backson SCE, Richards RW (1994) Hydroxyl accessibility in celluloses. Polymer (Guildf) 35(22):4717–4721. doi: 10.1016/0032-3861(94)90723-4 CrossRefGoogle Scholar
  34. Terlingen JG, Brenneisen LM, Super HT, Pijpers AP, Hoffman AS, Feijen J (1993) Introduction of amine groups on poly(ethylene) by plasma immobilization of a preadsorbed layer of decylamine hydrochloride. J Biomater Sci Polym Ed 4(3):165–181CrossRefGoogle Scholar
  35. Yasuda H (1985) Plasma polymerization. Academic Press, Inc., New York, pp 4–10Google Scholar
  36. Yasuda H, Bumgarner MO, Marsh HC, Morosoff N (1976) Plasma polymerization of some organic compounds and properties of the polymers. J Polym Sci Pol Chem 14(1):195–224Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alvaro de Jesús Martínez-Gómez
    • 1
  • Sorin O. Manolache
    • 2
  • Víctor Gónzalez-Álvarez
    • 1
  • Raymond A. Young
    • 4
  • Ferencz Sandor Denes
    • 3
  1. 1.Chemical Engineering DepartmentUniversity of GuadalajaraGuadalajaraMexico
  2. 2.Center for Plasma-Aided ManufacturingUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Biological Systems EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Forest Ecology and ManagementUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations