Advertisement

Cellulose

, Volume 16, Issue 2, pp 189–198 | Cite as

Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution

  • Shilin Liu
  • Lina Zhang
Article

Abstract

Aqueous 5 wt% LiOH/12 wt% urea solution pre-cooled to −12 °C has a more powerful ability to dissolve cellulose compared to that of NaOH/urea and NaOH/thiourea solution system. The influences of the cellulose concentration and coagulation temperature on the structure, pore size and mechanical properties of the cellulose films prepared from LiOH/urea system were investigated. The cellulose films exhibited good mechanical properties either at wet or dry state and their pore size and water permeability at wet state can be controlled by changing the cellulose concentration or coagulation temperature. With a decrease of the coagulation temperature, the mechanical properties and optical transmittance of the cellulose films enhanced, as a result of the formation of relative smaller pore size and denser structures. This work provided a promising way to prepare cellulose films with different pore sizes at wet state and good physical properties at dry state.

Keywords

Cellulose Film Permeability LiOH/urea Mechanical properties 

Notes

Acknowledgments

This work was supported by National Support Project for Science and Technology (2006BAF02A09), as well as by major grant of the National Natural Science Foundation of China (59933070 and 30530850), the National Natural Science Foundation of China (20874079).

References

  1. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solution. Macromol Biosci 5:539–548. doi: 10.1002/mabi.200400222 CrossRefGoogle Scholar
  2. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189. doi: 10.1021/bm0505585 CrossRefGoogle Scholar
  3. Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Part B Polym Phys 44:3093–3101. doi: 10.1002/polb.20938 CrossRefGoogle Scholar
  4. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/Urea aqueous solution: structure and properties. Adv Mater 19:821–825. doi: 10.1002/adma.200601521 CrossRefGoogle Scholar
  5. Clasen C, Sultanova B, Wilhelms T, Heisig P, Kulicke WM (2006) Effects of different drying processes on the material properties of bacterial cellulose films. Macromol Symp 244:48–58. doi: 10.1002/masy.200651204 CrossRefGoogle Scholar
  6. Fink HP, Weigei P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO solutions. Prog Polym Sci 26:1473–1524. doi: 10.1016/S0079-6700(01)00025-9 CrossRefGoogle Scholar
  7. Inamoto M, Miyamamoto I, Hongo T, Iwada M, Okajima K (1996) Morphological formation of the regenerated cellulose films recovered from its cuprammonium solution using various coagulants. Polym J 28:507–512. doi: 10.1295/polymj.28.507 CrossRefGoogle Scholar
  8. Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Macromolecules 22:3168–3172. doi: 10.1021/ma00197a045 CrossRefGoogle Scholar
  9. Kamide K, Iijima H, Matsuda S (1993) Thermodynamics of formation of porous polymeric film by phase separation method I: nucleation and growth of nuclei. Polym J 25:1113–1131. doi: 10.1295/polymj.25.1113 CrossRefGoogle Scholar
  10. Kim J, Yun S (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206. doi: 10.1021/ma060261e CrossRefGoogle Scholar
  11. Liu S, Zhou J, Zhang L, Guan J, Wang J (2006) Synthesis and alignment of iron oxide nanoparticles in a regenerated cellulose film. Macromol Rapid Commun 27:2084–2089. doi: 10.1002/marc.200600543 CrossRefGoogle Scholar
  12. Liu S, Zhang L, Zhou J, Wu R (2008) Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J Phys Chem C 112:1538–4544Google Scholar
  13. Mulder M (1992) Basic principles of film technology. Kluwer, DordrechtGoogle Scholar
  14. Rabek JF (1980) Experimental methods in polymer chemistry: applications of wide-angle X-ray diffraction (WAXD) to the study of the structure of polymers. Wiley Interscience, Chichester, p 507Google Scholar
  15. Rogers RD, Turner MB, Spear SK, Holbrey JD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384. doi: 10.1021/bm049748q CrossRefGoogle Scholar
  16. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837. doi: 10.1016/S0079-6700(01)00023-5 CrossRefGoogle Scholar
  17. Rosenau T, Hofinger A, Potthast A, Kosma P (2003) On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution. Polymer (Guildford) 44:6153–6158. doi: 10.1016/S0032-3861(03)00663-3 CrossRefGoogle Scholar
  18. Ruan D, Zhang L, Zhang Z, Xia X (2004a) Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. J Polym Sci Polym Phys 42:367–373. doi: 10.1002/polb.10664 CrossRefGoogle Scholar
  19. Ruan D, Zhang L, Mao Y, Zeng M, Li X (2004b) Microporous films prepared from cellulose in NaOH/thiourea aqueous solution. J Membr Sci 241:265–274. doi: 10.1016/j.memsci.2004.05.019 CrossRefGoogle Scholar
  20. Sang YO, Dong IY, Younsook S, Hwan CK, Hak YK, Yong SC, Won HP, Ji HY (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. doi: 10.1016/j.carres.2005.08.007 CrossRefGoogle Scholar
  21. Simon J, Muller HP, Koch R, Muller V (1998) Thermoplastic and biodegradable polymers of cellulose. Polym Degrad Stabil 59:107–115. doi: 10.1016/S0141-3910(97)00151-1 CrossRefGoogle Scholar
  22. Togawa E, Kondo T (1999) Change of morphological properties in drawing water-swollen cellulose films prepared from organic solutions: a view of molecular orientation in the drawing process. J Polym Sci Polym Phys 37:451–459. doi:10.1002/(SICI)1099-0488(19990301)37:5<451::AID-POLB5>3.0.CO;2-7CrossRefGoogle Scholar
  23. Van de Witte PVD, Dijkstra PJ, Van de Berg JWA, Feijen J (1996) Phase separation process in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31. doi: 10.1016/0376-7388(96)00088-9 CrossRefGoogle Scholar
  24. Yang G, Zhang L (1996) Regenerated cellulose microporous films by mixing cellulose cuoxam with a water soluble polymer. J Membr Sci 114:149–155. doi: 10.1016/0376-7388(95)00314-2 CrossRefGoogle Scholar
  25. Yoshihiko A, Akira M (2003) Hemodialysis film prepared from cellulose/N-methylmorpholine-N-oxide solution. II. Comparative studies on the permeation characteristics of films prepared from N-methylmorpholine-N-oxide and cuprammonium solutions. J Appl Polym Sci 89:333–339. doi: 10.1002/app.12088 CrossRefGoogle Scholar
  26. Zhou J, Zhang L, Cai J, Shu H (2002) Cellulose microporous films prepared from NaOH/urea aqueous solution. J Membr Sci 210:77–90. doi: 10.1016/S0376-7388(02)00377-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of ChemistryWuhan UniversityWuhanChina

Personalised recommendations