, 15:537 | Cite as

The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres

  • Tobias Köhnke
  • Carla Pujolras
  • Johannes P. Roubroeks
  • Paul Gatenholm


This study investigates the adsorption of (glucurono)arabinoxylan (GAX) on cellulose fibres and the properties thereof. A water-soluble GAX, from barley husks (Hordeum vulgare), was isolated using chlorite delignification and alkaline extraction followed by enzymatic purification. The isolated GAX fraction showed an arabinose to xylose ratio of 0.22 and a weight average molar mass of 20,200 g/mol, as determined by size exclusion chromatography (SEC) in DMSO:H2O. The GAX was adsorbed on cellulose fibres under well controlled conditions, where temperature and initial concentration of GAX proved to be important parameters in controlling the level of adsorption. The adsorption process was also dependent on xylan molecular structure. Carbohydrate analysis on the modified fibres showed a preferential adsorption of low substituted xylans (arabinose to xylose ratio of ∼0.10). During the adsorption process the GAX solution was analyzed using SEC-RI-MALLS in aqueous solvent, which demonstrated a molecular xylan adsorption on cellulose fibres. Additionally, a decrease in light scattering responses, which corresponds to an adsorption of aggregated xylan and/or xylan with a great tendency towards self-association, could be observed during the adsorption process. This was demonstrated by adsorption of GAX on regenerated cellulose fibres (Lyocell), which compared to native fibres possesses a relatively smooth fibre surface. Atomic force microscopy analysis visualised a heterogeneous decoration of the Lyocell fibres with xylan agglomerates. The effect of GAX adsorption on paper strength was also investigated. A GAX modified kraft pulp showed an evident increase in tensile strength, which might be due to a retained fibre–fibre bonding ability for xylan coated fibrils after drying and rewetting.


Adsorption Aggregation Barley husk Beatability Cellulose fibre Extraction (Glucurono)arabinoxylan Isolation Softwood kraft pulp Tensile strength 



Lyckeby Stärkelsen is acknowledged for providing the barley husks. Södra Cell R&D is acknowledged for pulp analyses. Dr. Bodo Saake at vTI-Institute for Wood Technology and Biology in Hamburg, Germany, is gratefully acknowledged for the SEC measurements in DMSO. The authors also gratefully acknowledge Södra Cell and the Knowledge Foundation through its graduate school, YPK, for financial support.


  1. Andrewartha KA, Phillips RD, Stone BA (1979) Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans. Carbohydr Res 77:191–204CrossRefGoogle Scholar
  2. Aspinall GO, Ferrier RJ (1957) The constitution of barley husk hemicellulose. J Chem Soc 840:4188–4194CrossRefGoogle Scholar
  3. Blake JD, Richards GN (1971) Evidence for molecular aggregation in hemicelluloses. Carbohydr Res 18:11–21CrossRefGoogle Scholar
  4. Brumer H III, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucans. J Am Chem Soc 126(18):5715–5721CrossRefGoogle Scholar
  5. Christiernin M, Henriksson G, Lindström ME, Brumer H, Teeri TT, Lindström T, Laine J (2003) The effects of xyloglucan on the properties of paper made from bleached kraft pulp. Nord Pulp Paper Res J 18(2):182–187CrossRefGoogle Scholar
  6. Dea ICM, Rees DA, Beveridge RJ, Richards GN (1973) Aggregation with change of conformation in solutions of hemicellulose xylans. Carbohydr Res 29:363–372CrossRefGoogle Scholar
  7. Duchesne I, Hult EL, Molin U, Daniel G, Iversen T, Lennholm H (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8(2):103–111CrossRefGoogle Scholar
  8. Ebringerova A, Hromadkova Z, Burchard W, Dolega R, Vorwerg W (1994) Solution properties of water-insoluble rye-bran arabinoxylan. Carbohydr Polym 24:161–169CrossRefGoogle Scholar
  9. Esker A, Becker U, Jamin S, Beppu S, Renneckar S, Glasser W (2004) Self-assembly behavior of some co- and heteropolysaccharides related to hemicelluloses. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. ACS Symp Ser 864:198–219Google Scholar
  10. Evans DF, Wennerström H (1999) The colloidal domain. Wiley-VCH, Toronto, pp 351–400Google Scholar
  11. Glasser WG, Kaar WE, Jain RK, Sealey JE (2000) Isolation options for non-cellulosic heteropolysaccharides (HetPS). Cellulose 7(3):299–317CrossRefGoogle Scholar
  12. Gradwell SE, Renneckar S, Esker AR, Heinze T, Gatenholm P, Vaca-Garcia C, Glasser W (2004) Surface modification of cellulose fibers: towards wood composites by biomimetics. C R Biol 327:945–953CrossRefGoogle Scholar
  13. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807CrossRefGoogle Scholar
  14. Hannuksela T, Tenkanen M, Holmbom B (2002) Sorption of dissolved galactoglucomannans and galactomannans to bleached kraft pulp. Cellulose 9(3/4):251–261CrossRefGoogle Scholar
  15. Hannuksela T, Holmbom B, Mortha G, Lachenal D (2004) Effect of sorbed galactoglucomannans and galactomannans on pulp and paper handsheet properties, especially strength properties. Nord Pulp Paper Res J 19(2):237–244CrossRefGoogle Scholar
  16. Hansson J-Å (1970) Sorption of hemicelluloses on cellulose fibres. Part 3. The temperature dependence on sorption of birch xylan and pine glucomannan at kraft pulping conditions. Svensk Papperstid 73(3):49–53Google Scholar
  17. Hartler N, Lund A (1962) Sorption of xylans on cotton. Svensk Papperstidn 65(23):951–955Google Scholar
  18. Henriksson Å, Gatenholm P (2001) Controlled assembly of glucuronoxylans onto cellulose fibres. Holzforschung 55(5):494–502CrossRefGoogle Scholar
  19. Henriksson Å, Gatenholm P (2002) Surface properties of CTMP fibers modified with xylans. Cellulose 9(1):55–64CrossRefGoogle Scholar
  20. Höije A, Gröndahl M, Tommeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohydr Polym 61:266–275CrossRefGoogle Scholar
  21. Höije A, Sandström C, Roubroeks JP, Andersson R, Gohil S, Gatenholm P (2006) Evidence of the presence of 2-O-β-d-xylopyranosyl-α-l-arabinofuranose side chains in barley husk arabinoxylan. Carbohydr Res 341:2959–2966CrossRefGoogle Scholar
  22. Kabel MS, van den Borne H, Vincken JP, Voragen AGJ, Schols HA (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym 69(1):94–105CrossRefGoogle Scholar
  23. Köhnke T, Gatenholm P (2007) The effect of controlled glucuronoxylan adsorption on drying-induced strength loss of bleached softwood pulp. Nordic Pulp Paper Res J 22(4):508–515CrossRefGoogle Scholar
  24. LeBel RG, Goring DA, Timell TE (1963) Solution properties of birch xylan. I. Measurement of molecular weight. J Polym Sci Part C 2:9–28CrossRefGoogle Scholar
  25. Lima DU, Oliveira RC, Buckeridge MS (2003) Seed storage hemicelluloses as wet-end additives in papermaking. Carbohydr Polym 52(4):367–373CrossRefGoogle Scholar
  26. Lima DU, Loh W, Buckeridge MS (2004) Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucans. Plant Physiol Biochem 42(5):389–394CrossRefGoogle Scholar
  27. Linder Å, Gatenholm P (2004) Effect of cellulose substrate on assembly of xylans. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. ACS Symp Ser 864:236–253Google Scholar
  28. Linder Å, Bergman R, Bodin A, Gatenholm P (2003) Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 19(12):5072–5077CrossRefGoogle Scholar
  29. Lindström T, Wågberg L, Larsson PT (2005) On the nature of joint strength in paper—a review of dry and wet strength resins used in paper manufacturing. In: I’Anson SJ (ed) Adv Paper Sci Technol. Trans 13th Fund Res Symp, Cambridge, UK, pp 457–562Google Scholar
  30. McNeil M, Albersheim P, Taiz L, Jones RL (1975) The structure of plant cell walls. VII. Barley aleurone cells. Plant Physiol 55(1):64–68CrossRefGoogle Scholar
  31. Oksanen T, Buchert J, Viikari L (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51(4):355–360CrossRefGoogle Scholar
  32. Paananen A, Österberg M, Rutland M, Tammelin T, Saarinen T, Tappura K, Stenius P (2004) Interaction between cellulose and xylan: an atomic force microscope and quartz crystal microbalance study. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. ACS Symp Ser 864:269–290Google Scholar
  33. Puls J, Schröder N, Stein A, Janzon R, Saake B (2006) Xylans from oat spelts and birch kraft pulp. In: Fischer K, Heinze T (eds) Hemicelluloses. Macromol Symp 232:85–92Google Scholar
  34. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallet JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489CrossRefGoogle Scholar
  35. Sarkanen KV, Ludwig CH (1971) Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 193–194Google Scholar
  36. Saake B, Kruse Th, Puls J (2001) Investigation on molar mass, solubility and enzymatic fragmentation of xylans by multi-detected SEC chromatography. Bioresour Technol 80:195–204CrossRefGoogle Scholar
  37. Schönberg C, Oksanen T, Suurnäkki A, Kettunen H, Buchert J (2001) The importance of xylan for the strength properties of spruce kraft pulp fibre. Holzforschung 55(6):639–644CrossRefGoogle Scholar
  38. Suurnäkki A, Oksanen T, Kettunen H, Buchert J (2003) The effect of mannan on physical properties of ECF bleached softwood kraft fibre handsheets. Nord Pulp Paper Res J 18(4):429–435CrossRefGoogle Scholar
  39. Teeri TT, Brumer H III, Daniel G, Gatenholm P (2007) Biomimetic engineering of cellulose-based materials. Trends Biotechnol 25(7):299–306CrossRefGoogle Scholar
  40. Theander O, Westerlund EA (1986) Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J Agric Food Chem 34(2):330–336CrossRefGoogle Scholar
  41. Theander O, Åman P, Westerlund E, Andersson R, Pettersson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (The Uppsala method): collaborative study. J AOAC Int 78(4):1030–1044Google Scholar
  42. van Wyk JPH (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19(5):172–177CrossRefGoogle Scholar
  43. Westbye P, Köhnke T, Glasser W, Gatenholm P (2007) The influence of lignin on the self-assembly behaviour of xylan rich fractions from birch (Betula pendula). Cellulose 14(6):603–613CrossRefGoogle Scholar
  44. Westbye P, Köhnke T, Gatenholm P (2008) Fractionation and characterization of xylan rich extracts from birch. Holzforschung 62(1):31–37CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tobias Köhnke
    • 1
  • Carla Pujolras
    • 1
  • Johannes P. Roubroeks
    • 2
  • Paul Gatenholm
    • 1
  1. 1.Biopolymer Technology, Department of Chemical and Biological EngineeringChalmers University of TechnologyGothenburgSweden
  2. 2.Södra Cell R&DVäröbackaSweden

Personalised recommendations