Advertisement

Cellulose

, Volume 15, Issue 3, pp 481–488 | Cite as

Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride

  • Mari Granström
  • Jari Kavakka
  • Alistair King
  • Johanna Majoinen
  • Valtteri Mäkelä
  • Juho Helaja
  • Sami Hietala
  • Tommi Virtanen
  • Sirkka-Liisa Maunu
  • Dimitris S. Argyropoulos
  • Ilkka Kilpeläinen
Article

Abstract

Tosylation and acylation of cellulose were performed under mild reaction conditions using imidazolium based ionic liquids (ILs) as solvents. The non-degradative nature, lower viscosity, as well as higher solubility of cellulose in [amim]Cl encouraged us to carry out the reactions in this media. The reactions described here were optimised for this particular solvent in order to obtain different cellulose derivatives with high yields, homogeneity and degree of substitution (DS). Two reagents employed for the in situ activation of carboxylic acids were N,N′-carbonyldiimidazole (CDI) and 1-ethyl-3-(3′-dimethylaminopropyl)carbodiimide hydrochloride (EDCI). Final products were characterised by solution and solid-state NMR techniques.

Keywords

1-Allyl-3-methylimidazolium chloride Cellulose Cellulose modification Ionic liquid Synthesis of cellulose derivatives 

Notes

Acknowledgements

This research was supported by the University of Helsinki research grant. We would like to thank Dr. Reijo Aksela and Dr. Vesa Myllymäki from Kemira Oyj, Finland.

Supplementary material

10570_2008_9197_MOESM1_ESM.pdf (18.7 mb)
(PDF 19186 kb)

References

  1. Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306CrossRefGoogle Scholar
  2. Bruckner R (2002) Advanced organic chemistry, reaction mechanisms. Harcourt/Academic Press, USA, p 242Google Scholar
  3. Eastman Kodak Co. (1969) Process for strengthening swellable fibrous material with an amine oxide and the resulting material. US3447956Google Scholar
  4. Einfeldt J, Heinze T, Liebert T, Kwasniewski A (2002) Influence of the p-toluenesulphonylation of cellulose on the polymer dynamics investigated by dielectric spectroscopy. Carbohydr Polym 49:357–365CrossRefGoogle Scholar
  5. El Seoud OA, Marson AG, Ciacco TG, Frollini E (2000) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201:882–889CrossRefGoogle Scholar
  6. Heinze T, Rahn K, Jaspers M, Berghmans H (1996) Thermal studies on homogeneously synthesized cellulose p-toluenesulfonates. J Appl Polym Sci 60:1891–1900CrossRefGoogle Scholar
  7. Heinze T, Liebert T (2001a) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1726CrossRefGoogle Scholar
  8. Heinze T, Rahn K (1997) Cellulose p-toluenesulfonates: a valuable intermediate in cellulose chemistry. Macromol Symp 120:103–113Google Scholar
  9. Heinze T, Dicke R, Koschella A, Henning Kull A, Klohr EA, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631CrossRefGoogle Scholar
  10. Heinze T, Koschella A, Magdaleno-Maiza L, Ulrich AS (2001b) Nucleophilic displacement reactions on tosyl cellulose by chiral amines. Polym Bull 46:7–13CrossRefGoogle Scholar
  11. Heinze T, Liebert T, Pfeiffer K, Hussain M (2003) Unconventional cellulose esters: synthesis, characterization and structure–property relations. Cellulose 10:283–296CrossRefGoogle Scholar
  12. Heinze T, Schwikai K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525CrossRefGoogle Scholar
  13. Hussain MA, Liebert T, Heinze T (2004) Acylation of cellulose with N,N-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Rapid Commun 25:916–920CrossRefGoogle Scholar
  14. Iriyama K, Shikari M, Yoshiura M (1979) An improved for extraction, partial purification, separation and isolation of chlorophyll from spinach leaves. J Liq Chromatogr 2:255–276CrossRefGoogle Scholar
  15. Kavakka JS, Heikkinen S, Kilpeläinen I, Mattila M, Lipsanen H, Helaja J (2007) Noncovalent attachment of pyro-pheophorbide a to a carbon nanotube. Chem Commun 5:519–521CrossRefGoogle Scholar
  16. Kern H, Choi S, Wenz G, Heinrich J, Ehrhardt L, Mischnick P, Garidel P, Blume A (2000) Synthesis, control of substitution pattern and phase transitions of 2,3-di-O-methylcellulose. Carbohydr Res 326:67–79CrossRefGoogle Scholar
  17. Kondo T (1997) The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J Polym Sci B Polym Phys 35:717–723CrossRefGoogle Scholar
  18. Koschella A, Heinze T (2001) Novel regioselectively 6-functionalized cationic cellulose polyelectrolytes prepared via cellulose sulfonates. Macromol Biosci 1:178–184CrossRefGoogle Scholar
  19. Koschella A, Heinze T (2003) Unconventional cellulose products by fluorination of tosyl cellulose. Macromol Symp 197:243–245CrossRefGoogle Scholar
  20. Krouit M, Granet R, Branland P, Verneuil B, Krausz P (2006) New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters. Bioorg Med Chem Lett 16:1651–1655CrossRefGoogle Scholar
  21. Krässig HA (1993) In: Huglin MB (ed) Cellulose, 1st edn, vol 11. Gordon and Breach Science Publishers, Amsterdam, p 31Google Scholar
  22. Liu C, Baumann H (2002) Exclusive and complete introduction of amino groups and their N-sulfo and N-carboxymethyl groups into the 6-position of cellulose without the use of protecting groups. Carbohydr Res 337:1297–1307CrossRefGoogle Scholar
  23. Mais U, Binder W, Knaus S, Gruber H (2000) Synthesis and 13C CP MAS NMR spectroscopy of cellulose-graft-poly(N-acetylethylenimine). Macromol Chem Phys 201:2115–2122CrossRefGoogle Scholar
  24. McCormick CL, Callais PA (1987) Derivatization of cellulose in lithium chloride and N-N-dimethylacetamide solutions. Polymer 13:2317CrossRefGoogle Scholar
  25. Myllymäki V, Aksela R (2005) Dissolution method for lignocellulosic materials. WO2005017001Google Scholar
  26. Rahn K, Diamantoglou M, Klemm D, Heinze T (1996) Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Angew Makromol Chem 238:143–163CrossRefGoogle Scholar
  27. Regiani AM, Frollini E, Marson GA, Arantes GA, El Seoud OA (1999) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci A Polym Chem 37:1357–1363CrossRefGoogle Scholar
  28. Samaranayake G., Glasser WG (1993) Cellulose derivatives with low DS-I: a novel acylation system. Carbohydr Polym 22:1–7CrossRefGoogle Scholar
  29. Schlufter K, Schmauder H-P, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27:1670–1676CrossRefGoogle Scholar
  30. Srokova I, Tomanova V, Ebringerova A, Malovikova A, Heinze T (2004) Water-soluble amphiphilic O-(carboxymethyl)cellulose derivatives – Synthesis and properties. Macromol Mater Eng 289:63–69CrossRefGoogle Scholar
  31. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  32. Swatloski R, Rogers R, Holbrey J (2003) WO03/029329Google Scholar
  33. Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268CrossRefGoogle Scholar
  34. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRefGoogle Scholar
  35. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mari Granström
    • 1
  • Jari Kavakka
    • 1
  • Alistair King
    • 1
  • Johanna Majoinen
    • 1
  • Valtteri Mäkelä
    • 1
  • Juho Helaja
    • 2
  • Sami Hietala
    • 3
  • Tommi Virtanen
    • 3
  • Sirkka-Liisa Maunu
    • 3
  • Dimitris S. Argyropoulos
    • 4
  • Ilkka Kilpeläinen
    • 1
  1. 1.Laboratory of Organic Chemistry, Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  3. 3.Laboratory of Polymer Chemistry, Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  4. 4.Organic Chemistry of Wood Components LaboratoryNorth Carolina State UniversityRaleighUSA

Personalised recommendations