, Volume 15, Issue 1, pp 177–185 | Cite as

Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp

  • Youssef Habibi
  • Michel R. Vignon


Microfibrillated cellulose from purified sugar beet pulp was converted into cellulose III by immersion in liquid ammonia. When freed from ammonia, this product was oxidized in water at pH-10 using NaBr, NaOCl and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) under various conditions and concentrations. The resulting water-soluble cellouronic acid—i.e. cellulose oxidized at the C6 position- was analyzed by high performance size exclusion chromatography (HPSEC) together with 13C NMR spectroscopy. The oxidation parameters, namely reaction time, temperature, NaBr and TEMPO concentrations were varied to determine the optimum reaction conditions. A low TEMPO concentration, a rather fast reaction time and the conducting of the oxidation at 0 °C were critical to obtain pure cellouronic acid in high yield, high purity and high DP.


Cellulose Cellouronic acid Oxidation TEMPO 



We thank P. Colin-Morel (CERMAV) for his help with the HPSEC experiments and Dr. H. Chanzy for valuable discussion and critical reading of the manuscript.


  1. Bragd PL, Besemer AC, van Bekkum H (2000) Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl α-D-glucopyranoside. Carbohydr Res 328(3):355–363CrossRefGoogle Scholar
  2. Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27(1–4):49–66CrossRefGoogle Scholar
  3. Bredereck K, Karstens T, Lentz H and Steinmeier H (1995) Process for the treatment of cellulose. US 0 298 399Google Scholar
  4. Chang PS, Robyt JF (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6,-tetramethyl-1-piperidine oxoammonium ion. J Carbohydr Chem 15(7):819–830CrossRefGoogle Scholar
  5. Chanzy H, Henrissat B, Vuong R, Revol J-F (1986) Distortion and fragmentation of cellulose crystals during the “reversible” transformation : cellulose I–cellulose IIII in Valonia. Holzforschung 40(Suppl):25Google Scholar
  6. Da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4(5):1417–1425CrossRefGoogle Scholar
  7. de Nooy AEJ, Besemer AC, van Bekkum H (1994) Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides. Recl Trav Chim Pays Bas 113(3):165–6Google Scholar
  8. de Nooy AEJ, Besemer AC, van Bekkum H (1995) Highly selective nitrosyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269(1):89–98CrossRefGoogle Scholar
  9. de Nooy AEJ, Besemer AC, van Bekkum H, van Dijk JAPP, Smit JAM (1996) TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains. Macromolecules 29(20):6541–6547CrossRefGoogle Scholar
  10. Dimitrijevich SD, Tatarko M, Gracy RW, Linsky CB, Olsen C (1990) Biodegradation of oxidized regenerated cellulose. Carbohydr Res 195:247–256CrossRefGoogle Scholar
  11. Dinand E (1997) Doctoral dissertation. Joseph Fourier University of Grenoble, FranceGoogle Scholar
  12. Dinand E, Excoffier G, Lienart Y, Vignon MR (1997) Two rhamnogalacturonide tetrasaccharides isolated from semi-retted flax fibers are signaling molecules in Rubus fruticosus L. cells. Plant Physiol 115(2):793–801CrossRefGoogle Scholar
  13. Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloid 13(3):275–283CrossRefGoogle Scholar
  14. Fleury E, Vignon MR and Gomez BS (2003) Method for preparation of poly- or copolyglucuronic acid. FR 2831171Google Scholar
  15. Fraschini C, Vignon MR (2000) Selective oxidation of primary alcohol groups of β-cyclodextrin mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). Carbohydr Res 328(4):585–589CrossRefGoogle Scholar
  16. Gomez-Bujedo S, Fleury E, Vignon MR (2004) Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaClO oxidation of water-soluble cellulose acetate. Biomacromolecules 5(2):565–571CrossRefGoogle Scholar
  17. Ibert M, Marsais F, Merbouh N, Brückner C (2002) Determination of the side-products formed during the nitroxide-mediated bleach oxidation of glucose to glucaric acid. Carbohydr Res 337:1059–1063CrossRefGoogle Scholar
  18. Isogai A (1998) Cellulose derivatives having glucuronic acid residues and their manufacture. JP 10251302Google Scholar
  19. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3):153–164CrossRefGoogle Scholar
  20. Isogai A, Shibata I (2001) Chemical modifications of cellulose by TEMPO-mediated oxidation. Sen’i Gakkaishi 57(6):163–P167Google Scholar
  21. Kato Y, Matsuo R, Kaminaga J (2002a) Gas barrier properties of polysaccharides. Cellulose Comm 9(4):221–224Google Scholar
  22. Kato Y, Habu N, Yamaguchi J, Kobayashi Y, Shibata I, Isogai A, Samejima M (2002b) Biodegradation of β-1,4-linked polyglucuronic acid (celluronic acid). Cellulose 9(1):75–81CrossRefGoogle Scholar
  23. Kato Y, Matsuo R, Isogai A (2002c) Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym 51(1):69–75CrossRefGoogle Scholar
  24. Kato Y, Kaminaga J, Matsuo R, Isogai A (2005a) Oxygen permeability and biodegradability of polyuronic acids prepared from polysaccharides by TEMPO-mediated oxidation. J Polym Environ 13(3):261–266CrossRefGoogle Scholar
  25. Kato Y, Kaminaga J, Matsuo R and Abe Y (2005b) Polyglucuronic acids as bioabsorbable hemostatics. JP 1056743Google Scholar
  26. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem 44(22):3358–3393CrossRefGoogle Scholar
  27. Lienart Y, Heyraud A and Sevenou O (2001) β-1,4-D-glucuronane polymers and related polysaccharide and oligosaccharide pesticides and fertilizers. WO 2001000025Google Scholar
  28. Miyazawa T, Endo T, Okawara M (1985) New method for preparation of superoxide ion by use of amino oxide. J Org Chem 50:5389–5391CrossRefGoogle Scholar
  29. Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671CrossRefGoogle Scholar
  30. Rinaudo M (1968) Physicochemical studies of solutions of cellulose in FeTNa [sodium iron tartrate]. La Papèterie 90:479–487Google Scholar
  31. Roche E, Chanzy H (1981) Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int J Biol Macromol 3:201–206CrossRefGoogle Scholar
  32. Saito T, Isogai A (2004) Modification of cellulose by TEMPO-mediated oxidation. Cellulose Comm 11(4):192–196Google Scholar
  33. Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterization of polyglucuronans. Cellulose 7(2):177–188CrossRefGoogle Scholar
  34. Vignon MR, Montanari S and Habibi Y (2004) Crystalline polysaccharide derivatives in the form of water-insoluble aggregates of microcrystals, for use e.g. as viscosity modifiers or super-absorbers, manufactured by controlled oxidation of primary alcohol groups. FR 2854161Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS) affiliated with Joseph Fourier University, and Institut de Chimie Moléculaire de Grenoble (ICMG)Grenoble cedex 9France
  2. 2.Ecole Française de Papeterie et des Industries Graphiques (EFPG-INPG)St-Martin d’Heres CedexFrance

Personalised recommendations