, Volume 14, Issue 5, pp 457–468 | Cite as

Degradation processes in the cellulose/N-methylmorpholine-N-oxide system studied by HPLC and ESR. Radical formation/recombination kinetics under UV photolysis at 77 K

  • Alexander Konkin
  • Frank Wendler
  • Frank Meister
  • Hans-Klaus Roth
  • Albert Aganov
  • Oliver Ambacher


Degradation processes of N-methylmorpholine-N-oxide monohydrate (NMMO), cellulose and cellulose/NMMO solutions were studied by high performance liquid chromatography (HPLC) and electron spin resonance (ESR) spectroscopy. Kinetics of radical accumulation processes under UV (λ = 248 nm) excimer laser flash photolysis was investigated by ESR at 77 K. Beside radical products of cellulose generated and stabilized at low temperature, radicals in NMMO and cellulose/NMMO solutions were studied for the first time in those systems and attributed to nitroxide type radicals ∼CH2–NO–CH2∼ and/or ∼CH2–NO–CH3∼ at the first and methyl CH3 and formyl CHO radicals at the second step of the photo-induced reaction. Kinetic study of radicals revealed that formation and recombination rates of radical reaction depend on cellulose concentration in cellulose/NMMO solutions and additional ingredients, e.g., Fe(II) and propyl gallate. HPLC measurements showed that the concentrations of ring degradation products, e.g., aminoethanol and acetaldehyde, are determined by the composition of the cellulose/NMMO solution. Results based on HPLC are mainly maintained by ESR that supports the assumption concerning a radical initiated ring-opening of NMMO.


Cellulose ESR Flash photolysis High performance liquid chromatography (HPLC) N-methylmorpholine-N-oxide Radicals 



The authors wish to express their gratitude to one of the anonymous reviewers whose remarks greatly help to improve the article. Financial support by the German Federal Ministry for Education and Research (BMBF) under contract No. 94/02 is gratefully acknowledged.


  1. Ayscough PB, Thomson C (1962) Electron spin resonance spectra of alkyl radicals in γ-irradiated alkyl halides. Trans Faraday Soc 58:1477–1494CrossRefGoogle Scholar
  2. Buijtenhuijs FA, Abbas M, Witteveen AJ (1986) The degradation and stabilization of cellulose dissolved in N-methylmorpholine-N-oxide (NMMO). Papier 40:615–619Google Scholar
  3. Chanzy H, Nawrot S, Peguy A, Smith P, Chevalier J (1982) Phase behaviour of the quasiternary system N-methylmorpholine-N-oxide, water and cellulose. J Polymer Sci 20:1909–1924Google Scholar
  4. Doering H (1956) Carboxylgruppenbestimmungen in Zellstoffen mit Komplexon. Papier 10:140–141Google Scholar
  5. Ferris JP, Gerwe RD, Gapski GR (1967) Iron-catalysed dealkylation of trimethylamine oxide. J Am Chem Soc 89:5269–5275CrossRefGoogle Scholar
  6. Fessenden RW, Schuler RH (1965) ESR spectra and structure of the fluorinated methyl radicals. J Chem Phys 43:2704–2712CrossRefGoogle Scholar
  7. Firgo H, Eibl K, Kalt W, Meister G (1994) Kritische Fragen zur Zukunft der NMMO-Technologie. Lenz Ber 9:81–89Google Scholar
  8. Guthrie JT, Manning CS (1990) The cellulose/N-methylmorpholine-N-oxide/H2O system: degradation aspects. In: Kennedy JF, Phillips GO, Williams PA (Hrsg.) (eds) Cellulose Sources and Exploitation. Ellis Horwood, New York, pp 49–57Google Scholar
  9. Holmberg RW (1969) ESR study of HCO in single crystals of formic acid at 77K. J Chem Phys 51:3255–3260CrossRefGoogle Scholar
  10. Hon NS (1976) Formation of free radicals in photoirradiated cellulose. VIII. mechanisms. J Polym Sci Polym Chem Ed 14:2497–2512CrossRefGoogle Scholar
  11. Konkin A, Wendler F, Roth H-K, Schrödner M, Meister F, Heinze T, Aganov A, Garipov R (2006a) Electron spin resonance study of radicals generated in cellulose/N-methylmorpholine-N-oxide solutions after flash photolysis at 77 K. Magn Reson Chem 44:594–605CrossRefGoogle Scholar
  12. Konkin A, Wendler F, Meister F, Roth H-K (2006b) Characterisation of radical processes in solutions of lignocellulose in direct solvents by electron resonance spectroscopy. In Proceedings 9th European Workshop on Lignocellulosics and Pulp EWLP, Vienna, 27–30 August 2006Google Scholar
  13. Lang H, Laskowski I, Lukanoff B, Schleicher H, Mertel H, Franz H, Taeger E (1986) Untersuchungen an Lösungen von Cellulose in N-Methylmorpholin-N-Oxid (MMNO). Cell Chem Technol 20:289–301Google Scholar
  14. Meister F, Vorbach D, Niemz F, Schulze T, Taeger E (2003) High-Tech-Cellulose-Funktionspolymere nach dem ALCERU®-Verfahren. Mat-wiss u Werkstofftech 34:262–266CrossRefGoogle Scholar
  15. Michels C, Maron R, Taeger E (1994) Besonderheiten des im TITK entwickelten Aminoxidprozesses. Lenz Ber 9:57–60Google Scholar
  16. Rosenau T, Potthast A, Kosma P, Chen CL, Gratzl JS (1999) Autocatalytic decomposition of N-methylmorpholine-N-oxide induced by Mannich intermediates. J Org Chem 64:2166–2167CrossRefGoogle Scholar
  17. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/water/cellulose (Lyocell-process). Prog Polym Sci 26:1763–1837CrossRefGoogle Scholar
  18. Rosenau T, Potthast A, Hofinger A, Sixta H, Kosma P (2002a) Instabilities in the system NMMO/water/cellulose (Lyocell-process) caused by Polonovski type reactions. Holzforschung 56:199–208CrossRefGoogle Scholar
  19. Rosenau T, Potthast A, Sixta H, Kosma P (2002b) Radicals derived from N-methylmorpholine-N-oxide (NMMO): structure, trapping and recombination reactions. Tetrahedron 58:3073–3078CrossRefGoogle Scholar
  20. Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002c) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)—degradation processes and stabilizers. Cellulose 9:283–291CrossRefGoogle Scholar
  21. Szabolcz O (1961) Eine kolorimetrische Methode zur Bestimmung der reduzierenden Carbonylgruppen in der Cellulose. Papier 15:41–44Google Scholar
  22. Taeger E, Franz H, Mertel H (1985) Probleme der schwefelkohlenstofffreien Verformung von Zellulose zu textilen Zellulosefäden mittels N-Methylmorpholin-N-oxids. Formeln Fasern Fertigware 4:14–22Google Scholar
  23. Wendler F, Graneß G, Heinze T (2005a) Characterization of autocatalytic reactions in modified cellulose/NMMO solutions by thermal analysis and UV/VIS spectroscopy. Cellulose 12:411–422CrossRefGoogle Scholar
  24. Wendler F, Kolbe A, Meister F, Heinze T (2005b) Thermostability of Lyocell dopes modified with surface-active additives. Macromol Mat Eng 290:826–832CrossRefGoogle Scholar
  25. Wendler F, Graneß G, Büttner R, Meister F, Heinze T (2006) A novel polymeric stabilizing system for modified lyocell dopes. J Polym Sci Pol Phys 44:1702–1713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Alexander Konkin
    • 1
  • Frank Wendler
    • 2
  • Frank Meister
    • 2
  • Hans-Klaus Roth
    • 2
  • Albert Aganov
    • 3
  • Oliver Ambacher
    • 1
  1. 1.Center for Micro and NanotechnologiesTechnical University of IlmenauIlmenauGermany
  2. 2.Centre of Excellence for Polysaccharide ResearchThuringian Institute for Textile and Plastics ResearchRudolstadt-SchwarzaGermany
  3. 3.Physical departmentKazan State UniversityKazanRussia

Personalised recommendations