, Volume 14, Issue 6, pp 625–641 | Cite as

Xyloglucan in cellulose modification

  • Qi Zhou
  • Mark W. Rutland
  • Tuula T. Teeri
  • Harry Brumer


Xyloglucans are the principal polysaccharides coating and crosslinking cellulose microfibrills in the majority of land plants. This review summarizes current knowledge of xyloglucan structures, solution properties, and the mechanism of interaction of xyloglucans with cellulose. This knowledge base forms the platform for new biomimetic methods of cellulose surface modification with applications within the fields of textile manufacture, papermaking, and materials science. Recent advances using the enzyme xyloglucan endo-transglycosylase (XET, EC to introduce varied chemical functionality onto cellulose surfaces are highlighted.


Atomic force microscopy (AFM) Biocomposite Biomimetic Colloidal probe Surface modification XTH Xyloglucan Xyloglucan endo-transglycosylase (XET) 



Atom transfer radical polymerization










Enzyme-linked immunosorbent assay


Fluorescein isothiocyanate




Nitroxide-mediated polymerization


Optical brightening agent




Poly(l-lactic acid)




Reversible addition-fragmentation chain transfer


Ring-opening polymerization




Tamarind kernel powder


Xyloglucan endo-transglycosylase (EC




Chemically modified xyloglucan


Xyloglucan-poly(styrene) block co-polymer




Chemically modified xylogluco-oligosaccharide



We thank the Swedish Foundation for Strategic Research (SSF), the Swedish Research Council (VR), and the Swedish Agency for Innovation Systems (VINNOVA) for funding. M.W.R. and H.B. are Fellows of the Swedish Research Council (VR Rådsforskare).


  1. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27Google Scholar
  2. Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997Google Scholar
  3. Astley OM, Chanliaud E, Donald AM, Gidley MJ (2001) Structure of Acetobacter cellulose composites in the hydrated state. Int J Biol Macromol 29:193–202Google Scholar
  4. Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32:28–35Google Scholar
  5. Baba K, Sone Y, Misaki A, Hayashi T (1994) Localization of xyloglucan in the macromolecular complex composed of xyloglucan and cellulose in pea stems. Plant Cell Physiol 35:439–444Google Scholar
  6. Becnel J, Natarajan M, Kipp A, Braam J (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator. Plant Mol Biol 61:451–467Google Scholar
  7. Berry MJ, David PJ, Gidley MJ (2001) Conjugated polysaccharide fabric detergent and conditioning products. Patent No. US 6,225,462Google Scholar
  8. Bollok M, Henriksson H, Kallas Å, Jahic M, Teeri TT, Enfors SO (2005) Production of poplar xyloglucan endotransglycosylase using the methylotrophic yeast Pichia pastoris. Appl Biochem Biotechnol 126:61–77Google Scholar
  9. Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314Google Scholar
  10. Bourquin V, Nishikubo N, Abe H, Brumer H, Denman S, Eklund M, Christiernin M, Teeri TT, Sundberg B, Mellerowicz EJ (2002) Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 14:3073–3088Google Scholar
  11. Brumer H, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721Google Scholar
  12. Brummell DA (2006) Cell wall disassembly in ripening fruit. Func Plant Biol 33:103–119Google Scholar
  13. Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340Google Scholar
  14. Buckeridge MS, Crombie HJ, Mendes CJM, Reid JSG, Gidley MJ, Vieira CCJ (1997) A new family of oligosaccharides from the xyloglucan of Hymenaea coubaril L. (Leguminosae) cotyledons. Carbohyd Res 303:233–237Google Scholar
  15. Burgalassi S, Chetoni P, Panichi L, Boldrini E, Saettone MF (2000) Xyloglucan as a novel vehicle for timolol: pharmacokinetics and pressure lowering activity in rabbits. J Ocular Pharmacol Ther 16:497–509Google Scholar
  16. Campbell P, Braam J (1999) Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci 4:361–366Google Scholar
  17. Carambassis A, Rutland MW (1999) Interactions of cellulose surfaces: effect of electrolyte. Langmuir 15:5584–5590Google Scholar
  18. Carlmark A, Malmström E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901Google Scholar
  19. Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4:1740–1745Google Scholar
  20. Carpita N, McCann M (2000) The cell wall. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. John Wiley & Sons, Inc., Somerset, NJ, pp 52–108Google Scholar
  21. Chambat G, Karmous M, Costes M, Picard M, Joseleau JP (2005) Variation of xyloglucan substitution pattern affects the sorption on celluloses with different degrees of crystallinity. Cellulose 12:117–125Google Scholar
  22. Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996Google Scholar
  23. Chanliaud E, De Silva J, Strongitharm B, Jeronimidis G, Gidley MJ (2004) Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J 38:27–37Google Scholar
  24. Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20:25–35Google Scholar
  25. Christiernin M, Henriksson G, Lindstrom ME, Brumer H, Teeri TT, Lindstrom T, Laine J (2003) The effects of xyloglucan on the properties of paper made from bleached kraft pulp. Nord Pulp Paper Res J 18:182–187Google Scholar
  26. Cicortas Gunnarsson L, Zhou Q, Montanier C, Nordberg Karlsson E, Brumer H, Ohlin M (2006) Engineered xyloglucan specificity in a carbohydrate-binding module. Glycobiology 16:1171–1180Google Scholar
  27. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861Google Scholar
  28. Coutinho PM, Henrissat B (2006) Carbohydrate-active enzymes server, http://afmb.cnrs-mrs.fr/CAZY/Google Scholar
  29. Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–163Google Scholar
  30. Darley CP, Forrester AM, McQueen-Mason SJ (2001) The molecular basis of plant cell wall extension. Plant Mol Biol 47:179–195Google Scholar
  31. de Lima DU, Buckeridge MS (2001) Interaction between cellulose and storage xyloglucans: the influence of the degree of galactosylation. Carbohyd Polym 46:157–163Google Scholar
  32. Edwards M, Dea ICM, Bulpin PV, Reid JSG (1985) Xyloglucan (amyloid) mobilization in the cotyledons of Tropaeolum majus L seeds following germination. Planta 163:133–140Google Scholar
  33. Edwards M, Dea ICM, Bulpin PV, Reid JSG (1986) Purification and properties of a novel xyloglucan-specific endo-(1→4)-beta-d-glucanase from germinated nasturtium seeds (Tropaeolum majus L). J Biol Chem 261:9489–9494Google Scholar
  34. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131Google Scholar
  35. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367Google Scholar
  36. Feiler AA, Stiernstedt J, Theander K, Jenkins P, Rutland MW (2007) Effect of capillary condensation on friction force and adhesion. Langmuir 23:517–522Google Scholar
  37. Finkenstadt VL, Hendrixson TL, Millane RP (1995) Models of xyloglucan binding to cellulose microfibrils. J Carbohyd Chem 14:601–611Google Scholar
  38. Freitas RA, Martin S, Santos GL, Valenga F, Buckeridge MS, Reicher F, Sierakowski MR (2005) Physico-chemical properties of seed xyloglucans from different sources. Carbohyd Polym 60:507–514Google Scholar
  39. Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11Google Scholar
  40. Fry SC (1997) Novel ‘dot-blot’ assays for glycosyltransferases and glycosylhydrolases: optimization for xyloglucan endotransglycosylase (XET) activity. Plant J 11:1141–1150Google Scholar
  41. Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675Google Scholar
  42. Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ 1992 Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828Google Scholar
  43. Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plantarum 89:1–3Google Scholar
  44. Gidley MJ, Lillford PJ, Rowlands DW, Lang P, Dentini M, Crescenzi V, Edwards M, Fanutti C, Reid JSG (1991) Structure and solution properties of tamarind seed polysaccharide. Carbohyd Res 214:299–314Google Scholar
  45. Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651Google Scholar
  46. Greffe L, Bessueille L, Bulone V, Brumer H (2005) Synthesis, preliminary characterization, and application of novel surfactants from highly branched xyloglucan oligosaccharides. Glycobiology 15:437–445Google Scholar
  47. Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta-Gen Subj 1674:268–281Google Scholar
  48. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30Google Scholar
  49. Gustavsson MT, Persson PV, Iversen T, Martinelle M, Hult K, Teeri TT, Brumer H (2005) Modification of cellulose fiber surfaces by use of a lipase and a xyloglucan endotransglycosylase. Biomacromolecules 6:196–203Google Scholar
  50. Hanus J, Mazeau K (2006) The xyloglucan–cellulose assembly at the atomic scale. Biopolymers 82:59–73Google Scholar
  51. Hawker CJ, Wooley KL (2005) The convergence of synthetic organic and polymer chemistries. Science 309:1200–1205Google Scholar
  52. Hayashi T, Maclachlan G (1984) Pea xyloglucan and cellulose. 1. macromolecular organization. Plant Physiol 75:596–604Google Scholar
  53. Hayashi T, Marsden MPF, Delmer DP (1987) Pea xyloglucan and cellulose. 5. xyloglucan-cellulose interactions in vitro and in vivo. Plant Physiol 83:384–389Google Scholar
  54. Hayashi T, Ogawa K, Mitsuishi Y (1994a) Characterization of the adsorption of xyloglucan to cellulose. Plant Cell Physiol 35:1199–1205Google Scholar
  55. Hayashi T, Takeda T, Ogawa K, Mitsuishi Y (1994b) Effects of the degree of polymerization on the binding of xyloglucans to cellulose. Plant Cell Physiol 35:893–899Google Scholar
  56. Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res Part A 76A:431–438Google Scholar
  57. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644Google Scholar
  58. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212Google Scholar
  59. Hoffman M, Jia ZH, Peña MJ, Cash M, Harper A, Blackburn AR, Darvill A, York WS (2005) Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohyd Res 340:1826–1840Google Scholar
  60. Imai T, Sugiyama J (1998) Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31:6275–6279Google Scholar
  61. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A-Mater Sci Process 81:1109–1112Google Scholar
  62. Jia ZH, Cash M, Darvill AG, York WS (2005) NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan. Carbohyd Res 340:1818–1825Google Scholar
  63. Johansson P, Brumer H, Baumann MJ, Kallas ÅM, Henriksson H, Denman SE, Teeri TT, Jones TA (2004) Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell 16:874–886Google Scholar
  64. Kajiwara K, Mimura M (1996) Conformation analysis of oligosaccharides. Cellulose Commun 3:18–22Google Scholar
  65. Kallas ÅM, Piens K, Denman SE, Henriksson H, Fäldt J, Johansson P, Brumer III H, Teeri TT (2005) Enzymatic properties of native and deglycosylated hybrid aspen xyloglucan endotransglycosylase 16A expressed in Pichia pastoris. Biochem J 390:105–113Google Scholar
  66. Kalum L (1998) Enzymic stone-wash appearance of denim obtained by a process using xyloglucan/xyloglucanase. Patent No. WO 9849387Google Scholar
  67. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem-Int Edit 44:3358–3393Google Scholar
  68. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603Google Scholar
  69. Kooiman P (1960) On the occurence of amyloids in plant seeds. Acta Bot Neerl 9:208–219Google Scholar
  70. Lang P, Kajiwara K (1993) Investigations of the architecture of tamarind seed polysaccharide in aqueous solution by different scattering techniques. J Biomat Sci Polym Ed 4:517–528Google Scholar
  71. Lang P, Masci G, Dentini M, Crescenzi V, Cooke D, Gidley MJ, Fanutti C, Reid JSG (1992) Tamarind seed polysaccharide—preparation, characterization and solution properties of carboxylated, sulfated and alkylaminated derivatives. Carbohyd Polym 17:185–198Google Scholar
  72. Levy S, Maclachlan G, Staehelin LA (1997) Xyloglucan sidechains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations. Plant J 11:373–386Google Scholar
  73. Levy S, York WS, Stuikeprill R, Meyer B, Staehelin LA (1991) Simulations of the static and dynamic molecular conformations of xyloglucan—the role of the fucosylated side-chain in surface-specific side-chain folding. Plant J 1:195–215Google Scholar
  74. Lima DU, Loh W, Buckeridge MS (2004) Xyloglucan–cellulose interaction depends on the sidechains and molecular weight of xyloglucan. Plant Physiol Biochem 42:389–394Google Scholar
  75. Lima DU, Oliveira RC, Buckeridge MS (2003) Seed storage hemicelluloses as wet-end additives in papermaking. Carbohyd Polym 52:367–373Google Scholar
  76. Lindqvist J, Malmström E (2006) Surface modification of natural substrates by atom transfer radical polymerization. J Appl Polym Sci 100:4155–4162Google Scholar
  77. Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739Google Scholar
  78. Lönnberg H, Zhou Q, Brumer H, Teeri TT, Malmström E, Hult A (2006) Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(l-lactic acid) via ring-opening polymerization. Biomacromolecules 7:2178–2185Google Scholar
  79. Martin S, Freitas RA, Obayashi E, Sierakowski MR (2003) Physico-chemical aspects of galactoxyloglucan from the seeds of Hymenaea courbaril and its tetraborate complex. Carbohyd Polym 54:287–295Google Scholar
  80. Martinez-Fleites C, Guerreiro CIPD, Baumann MJ, Taylor EJ, Prates JAM, Ferreira LMA, Fontes CMGA, Brumer H, Davies GJ (2006) Crystal structures of Clostridium thermocellum xyloglucanase, XGH74A, reveal the structural basis for xyloglucan recognition and degradation. J Biol Chem 281:24922–24933Google Scholar
  81. McDougall GJ, Fry SC (1988) Inhibition of auxin-stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan. Planta 175:412–416Google Scholar
  82. McDougall GJ, Fry SC (1990) Xyloglucan oligosaccharides promote growth and activate cellulase—evidence for a role of cellulase in cell expansion. Plant Physiol 93:1042–1048Google Scholar
  83. Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O (2001) The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of clan-B glycoside hydrolases. Structure 9:513–525Google Scholar
  84. Millane RP (1992) Molecular and crystal structures of polysaccharides with cellulosic backbones. Frontiers Carbohyd Res 2:168–190Google Scholar
  85. Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133Google Scholar
  86. Miyazaki S, Endo K, Kawasaki N, Kubo W, Watanabe H, Attwood D (2003) Oral sustained delivery of paracetamol from in situ gelling xyloglucan formulations. Drug Dev Ind Pharm 29:113–119Google Scholar
  87. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8:313–343Google Scholar
  88. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24Google Scholar
  89. Morris S, Hanna S, Miles MJ (2004) The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnology 15:1296–1301Google Scholar
  90. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A-Mater Sci Process 80:155–159Google Scholar
  91. Nisbet DR, Crompton KE, Hamilton SD, Shirakawa S, Prankerd RJ, Finkelstein DI, Horne MK, Forsythe JS (2006) Morphology and gelation of thermosensitive xyloglucan hydrogels. Biophys Chem 121:14–20Google Scholar
  92. Nishinari K, Kim B, Fang YP, Nitta Y, Takemasa M (2006) Rheological and related study of gelation of xyloglucan in the presence of small molecules and other polysaccharides. Cellulose 13:365–374Google Scholar
  93. Nishitani K (1992) A novel method for detection of endoxyloglucan transferase. Plant Cell Physiol 33:1159–1164Google Scholar
  94. Nishitani K, Tominaga R (1992) Endoxyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 267:21058–21064Google Scholar
  95. Nyström D, Lindqvist J, Östmark E, Hult A, Malmström E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 3594–3596Google Scholar
  96. Ogawa K, Hayashi T, Okamura K (1990) Conformational analysis of xyloglucans. Int J Biol Macromol 12:218–222Google Scholar
  97. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526Google Scholar
  98. Pauly M, Albersheim P, Darvill A, York WS (1999a) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639Google Scholar
  99. Pauly M, Andersen LN, Kauppinen S, Kofod LV, York WS, Albersheim P, Darvill A (1999b) A xyloglucan-specific endo-beta-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9:93–100Google Scholar
  100. Picard C, Gruza J, Derouet C, Renard C, Mazeau K, Koca J, Imberty A, du Penhoat CH (2000) A conformational study of the xyloglucan oligomer, XXXG, by NMR spectroscopy and molecular modeling. Biopolymers 54:11–26Google Scholar
  101. Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12Google Scholar
  102. Popper ZA, Fry SC (2004) Primary cell wall composition of pteridophytes and spermatophytes. New Phytol 164:165–174Google Scholar
  103. Priem B, Chambat G, Ruel K, Joseleau JP (1997) Use of the avidin–biotin complex for specific immobilization of xyloglucan polysaccharides. J Carbohyd Chem 16:625–633Google Scholar
  104. Puhlmann J, Bucheli E, Swain MJ, Dunning N, Albersheim P, Darvill AG, Hahn MG (1994) Generation of monoclonal-antibodies against plant cell wall polysaccharides. 1. Characterization of a monoclonal antibody to a terminal alpha-(1- 2)-linked fucosyl-containing epitope. Plant Physiol 104:699–710Google Scholar
  105. Rao PS, Srivastava HC (1973) Tamarind. In: BeMiller JN (ed) Industrial gums—polysaccharides and their derivatives. Academic Press, New York, pp 369–411Google Scholar
  106. Reiter WD (2002) Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 5:536–542Google Scholar
  107. Ren YL, Picout DR, Ellis PR, Ross-Murphy SB (2004) Solution properties of the xyloglucan polymer from Afzelia africana. Biomacromolecules 5:2384–2391Google Scholar
  108. Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183Google Scholar
  109. Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435Google Scholar
  110. Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372Google Scholar
  111. Rutland MW, Carambassis A, Willing GA, Neuman RD (1997) Surface force measurements between cellulose surfaces using scanning probe microscopy. Colloid Surf A-Physicochem Eng Asp 123:369–374Google Scholar
  112. Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626Google Scholar
  113. Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127Google Scholar
  114. Sassi JF, Tekely P, Chanzy H (2000) Relative susceptibility of the I-alpha and I-beta phases of cellulose towards acetylation. Cellulose 7:119–132Google Scholar
  115. Saura-Valls M, Faure R, Ragas S, Piens K, Brumer H, Teeri TT, Cottaz S, Driguez H, Planas A (2006) Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase. Biochem J 395:99–106Google Scholar
  116. Shankaracharya NB (1998) Tamarind—chemistry, technology and uses—a critical appraisal. J Food Sci Tech 35:193–208Google Scholar
  117. Shipp DA (2005) Living radical polymerization: controlling molecular size and chemical functionality in vinyl polymers. J Macromol Sci-Polym Rev C45:171–194Google Scholar
  118. Shirakawa M, Yamatoya K, Nishinari K (1998) Tailoring of xyloglucan properties using an enzyme. Food Hydrocolloid 12:25–28Google Scholar
  119. Sims IM, Gane AM, Dunstan D, Allan GC, Boger DV, Melton LD, Bacic A (1998) Rheological properties of xyloglucans from different plant species. Carbohyd Polym 37:61–69Google Scholar
  120. Sims IM, Munro SLA, Currie G, Craik D, Bacic A (1996) Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohyd Res 293:147–172Google Scholar
  121. Stiernstedt J, Brumer H, Zhou Q, Teeri TT, Rutland MW (2006a) Friction between cellulose surfaces and effect of xyloglucan adsorption. Biomacromolecules 7:2147–2153Google Scholar
  122. Stiernstedt J, Nordgren N, Wågberg L, Brumer H, Gray DG, Rutland MW (2006b) Friction and forces between cellulose model surfaces: a comparison. J Coll Int Sci 303:117–123Google Scholar
  123. Taylor IEP, Atkins EDT (1985) X-ray diffraction studies on the xyloglucan from tamarind (Tamarindus indica) seed. FEBS Lett 181:300–302Google Scholar
  124. Teeri TT, Brumer H (2003) Method for the modification of polymeric carbohydrate materials. Patent No. WO 03/033813Google Scholar
  125. Thompson DS (2005) How do cell walls regulate plant growth? J Exp Bot 56:2275–2285Google Scholar
  126. Umemura M, Yuguchi Y (2005) Conformational folding of xyloglucan side chains in aqueous solution from molecular dynamics simulation. Carbohyd Res 340:2520–2532Google Scholar
  127. Urakawa H, Mimura M, Kajiwara K (2002) Diversity and versatility of plant seed xyloglucan. Trends Glycosci Glycotechnol 14:355–376Google Scholar
  128. Valent BS, Albersheim P (1974) The structure of plant cell walls. 5. On the binding of xyloglucan to cellulose fibers. Plant Physiol 54:105–108CrossRefGoogle Scholar
  129. Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci USA 99:3340–3345Google Scholar
  130. Vincken JP, Beldman G, Voragen AGJ (1997a) Substrate specificity of endoglucanases: what determines xyloglucanase activity? Carbohyd Res 298:299–310Google Scholar
  131. Vincken JP, York WS, Beldman G, Voragen AGJ (1997b) Two general branching patterns of xyloglucan, XXXG and XXGG. Plant Physiol 114:9–13Google Scholar
  132. Vincken JP, Dekeizer A, Beldman G, Voragen AGJ (1995) Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 108:1579–1585Google Scholar
  133. Vissenberg K, Fry SC, Verbelen JP (2001) Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol 127:1125–1135Google Scholar
  134. Vissenberg K, Van Sandt V, Fry SC, Verbelen JP (2003) Xyloglucan endotransglucosylase action is high in the root elongation zone and in the trichoblasts of all vascular plants from Selaginella to Zea mays. J Exp Bot 54:335–344Google Scholar
  135. Wan WK, Hutter JL, Millon L, Guhados G (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Cellulose nanocomposites: processing, characterization, and properties. ACS Symposium Series, vol 938, pp 221–241Google Scholar
  136. Wang Q, Ellis PR, Ross-Murphy SB, Burchard W (1997) Solution characteristics of the xyloglucan extracted from Detarium senegalense Gmelin. Carbohyd Polym 33:115–124Google Scholar
  137. Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohyd Res 307:299–309Google Scholar
  138. Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121:657–663Google Scholar
  139. Whittaker JW (2003) Free radical catalysis by galactose oxidase. Chem Rev 103:2347–2363Google Scholar
  140. Yamanaka S, Mimira M, Urakawa H, Kajiwara K, Shirakawa M, Yamatoya K (1999) Conformation of tamarind seed xyloglucan oligomers. Sen’i Gakkaishi 55:590–596Google Scholar
  141. Yamatoya K, Shirakawa M (2003) Xyloglucan: structure, rheological properties, biological functions and enzymatic modification. Curr Trends Polym Sci 8:27–72Google Scholar
  142. Yan HW, Lindström T, Christiernin M (2006) Some ways to decrease fibre suspension flocculation and improve sheet formation. Nord Pulp Paper Res J 21:36–43Google Scholar
  143. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155Google Scholar
  144. Yaoi K, Kondo H, Noro N, Suzuki M, Tsuda S, Mitsuishi Y (2004) Tandem repeat of a seven-bladed beta-propeller domain in oligoxyloglucan reducing-end-specific cellobiohydrolase. Structure 12:1209–1217Google Scholar
  145. Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033Google Scholar
  146. Yokoyama R, Rose JKC, Nishitani K (2004) A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol 134:1088–1099Google Scholar
  147. Yoo MK, Choi HK, Kim TH, Choi YJ, Akaike T, Shirakawa M, Cho CS (2005) Drug release from xyloglucan beads coated with Eudragit for oral drug delivery. Arch Pharm Res 28:736–742Google Scholar
  148. York WS, Harvey LK, Guillen R, Albersheim P, Darvill AG (1993) The structure of plant cell walls. 36. Structural-analysis of tamarind seed xyloglucan oligosaccharides using beta-galactosidase digestion and spectroscopic methods. Carbohyd Res 248:285–301Google Scholar
  149. York WS, Kolli VSK, Orlando R, Albersheim P, Darvill AG (1996) The structures of arabinoxyloglucans produced by solanaceous plants. Carbohyd Res 285:99–128Google Scholar
  150. York WS, Vanhalbeek H, Darvill AG, Albersheim P (1990) The structure of plant cell walls. 29. Structural analysis of xyloglucan oligosaccharides by H-1-NMR spectroscopy and fast atom bombardment mass spectrometry. Carbohyd Res 200:9–31Google Scholar
  151. Yuguchi Y, Fujiwara T, Miwa H, Shrirakawa M, Yajima H (2005a) Color formation and gelation of xyloglucan upon addition of iodine solutions. Macromol Rapid Commun 26:1315–1319Google Scholar
  152. Yuguchi Y, Hirotsu T, Hosokawa J (2005b) Structural characteristics of xyloglucan—congo red aggregates as observed by small angle X-ray scattering. Cellulose 12:469–477Google Scholar
  153. Zhou Q, Baumann MJ, Brumer H, Teeri TT (2006a) The influence of surface chemical composition on the adsorption of xyloglucan to chemical and mechanical pulps. Carbohyd Polym 63:449–458Google Scholar
  154. Zhou Q, Baumann MJ, Piispanen PS, Teeri TT, Brumer H (2006b) Xyloglucan and xyloglucan endo-transglycosylases (XET): tools for ex vivo cellulose surface modification. Biocatal Biotransform 24:107–120Google Scholar
  155. Zhou Q, Greffe L, Baumann MJ, Malmström E, Teeri TT, Brumer III H (2005) The use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces: a general route for the design of biocomposites. Macromolecules 38:3547–3549Google Scholar
  156. Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Qi Zhou
    • 1
  • Mark W. Rutland
    • 2
    • 3
  • Tuula T. Teeri
    • 1
  • Harry Brumer
    • 1
  1. 1.School of BiotechnologyRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.School of ChemistryRoyal Institute of Technology (KTH)StockholmSweden
  3. 3.Institute for Surface ChemistryStockholmSweden

Personalised recommendations