, Volume 13, Issue 4, pp 393–402 | Cite as

Splitting tendency of cellulosic fibers – Part 1. The effect of shear force on mechanical stability of swollen lyocell fibers

  • Hale Bahar Öztürk
  • Satoko Okubayashi
  • Thomas Bechtold


A procedure for splitting of a lyocell fiber into a multitude of finer fibrils was developed. Crockmeter, usually used for rub-fastness of colored textiles, was modified and used for obtaining required shear force on swollen lyocell fiber. The shear force applied on fibers, and the concentration of NaOH, which affects swelling degree of fiber, were shown to be the leading parameters determining split number of lyocell fiber. While number of shear cycles was found to be of minor relevance for fiber splitting, the applied pressure directly influences the number of splitted fibrils. For example, at a pressure of 34.8 kPa, the average split number of lyocell fiber in 2.5 M NaOH solution was observed as 15, whereas it was observed as 30 for 47 kPa and 41 for 59.3 kPa. Splitting was not observed above 5 M of NaOH solution. Analyses of fiber splitting permit new aspects to study inner structure of lyocell.


Alkali Fiber Fibrillation Lyocell Solvent retention value Split number Swelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Authors gratefully acknowledge to the Christian-Doppler Research Society and Lenzing AG in Austria for financial and material support, to Versuchsanstalt HTL-Dornbirn for equipment.


  1. AATCC Test Method 8-1996, Colorfastness to Crocking: AATCC Crockmeter Method.Google Scholar
  2. Albrecht W., Reintjes M. and Wulfhorst B. 1997. Lyocell fibers (An alternative regenerated cellulose fibers), Man-made Year Book, September, 41–46.Google Scholar
  3. Bourban C., Karamuk E., deFondaumiere M.J., Wintermantel E. (1997). Processing and characterization of a new biodegradable composite made of a PHB/V matrix and regenerated cellulosic fibers. J. Environ. Polym. Degrad. 5(3):159–166Google Scholar
  4. Colom X., Carrillo F. (2002). Crystallinity changes in lyocell and viscose-type fibers by caustic treatment. Eur. Polym. J. 38:2225–2230CrossRefGoogle Scholar
  5. Crawshaw J., Cameron R.E. (2000a). A small angle X-ray scattering study of the pore structure in Tencel cellulose fibers and effects on physical treatments. Polymer 41:4691CrossRefGoogle Scholar
  6. Crawshaw J., Vickers V.E., Briggs N.P., Heenan R.K., Cameron R.E. (2000b). The hydration of Tencel cellulose fibers studied using contrast variation in small angle neutron scattering. Polymer 41:1873–1881CrossRefGoogle Scholar
  7. Denoyelle G. (1959). Action of soda solutions on native cellulose, formation of hydrated sodium cellulosate; swelling. Svensk Papperstidning 62:390–406Google Scholar
  8. Hearle J.W.S. 1975. Fiber fracture and its relation to fiber structure and fiber end-uses, Contrib. Sci. Dev. Text. Ind., Jt. Conf.Google Scholar
  9. Ibbett R.N., Hsieh Y.L. (2001). Effect of fiber swelling on the structure of lyocell fabrics. Textile Res. J. 71(2):164–173Google Scholar
  10. Katz J.R., Seiberlich J. (1940). Swelling of cotton fibers in sodium hydroxide solutions and in the presence of lyotropic substances. Rayon Textile Monthly 21:746–748Google Scholar
  11. Kennedy J., Phillips G., Williams P. (1996). Allomorphs of Cellulose and Other Polysaccharides. Cambridge, Woodhead Publishing LimitedGoogle Scholar
  12. Klemm D., Philipp B., Heinze T. (1998). Comprehensive cellulose chemistry: fundamentals and analytical methods. vol. 1, Wiley. VCH Verlag, WeinheimGoogle Scholar
  13. Lenz J., Schurz J., Wrentschur E. (1993). Properties and structure of solvent-spun and viscose-type fibers in the swollen state. Colloid Polym. Sci. 271:460–468CrossRefGoogle Scholar
  14. Lewin M., Sello S.B. (1983). Chemical Processing of Fibers and Fabrics, Part A Fundamentals and Preparation. Marcel Deckker, New YorkGoogle Scholar
  15. Mantanis G.I., Young R.A, Rowell R.M. (1994). Swelling of wood Part 1. Swelling in water. Wood Sci.Technol. 28:119–134CrossRefGoogle Scholar
  16. Morton W.E., Hearle J.W.S. (1997). Physical Properties of Textile Fibers. Textile Institute, ManchesterGoogle Scholar
  17. Nemec H. (1994). Fibrillation of cellulosic materials – Can previous literature offer a solution? Lenzinger Berichte 74:69–72Google Scholar
  18. Öztürk H.B., Bechtold T. (2005) Splitting tendency of cellulosic fibers. Lenzinger Berichte 84:123–130Google Scholar
  19. Pavlov P.N. (1928). Adsorption and swelling of cellulose in sodium hydroxide solution. Kolloid-Zeitschrift 44:44–63CrossRefGoogle Scholar
  20. Peter M. and Rouette H.K. 1989. Grundlagen der Textilveredlung, 13. Auflage, Deutscher Fachverlag, Frankfurt.Google Scholar
  21. Petitpas G., Petitpas T. (1952). Effect of temperature on the swelling and crystalline state of cellulose in caustic solutions. Memorial des Servises Chimiques de l’Etat 37(No. 3):265–269Google Scholar
  22. Preston J.M., Nimkar M.V. (1949). Measuring the swelling of fibers in water. J. Text. Inst. 40:674–686CrossRefGoogle Scholar
  23. Rohrer C., Retzl P., Firgo H. (2001). Lyocell LF-profile of a fibrillation-free fiber from Lenzing. Lenzinger Berichte 80:75–81Google Scholar
  24. Schurz J. (1994a). What is new about new fibers of the lyocell type? Lenzinger Berichte 74:37–40Google Scholar
  25. Schurz J., Lenz J. (1994b). Investigations on the structure of regenerated cellulose fibers. Macromol. Symp. 83:273–389Google Scholar
  26. Schuster K.C., Aldred P., Villa M., Baron M., Loidl R., Biganska O., Patlazhan S., Navard P., Rüf H., Jericha E. (2003). Characterising the emerging lyocell fibers structures by ultra small angle neutron scattering (USANS). Lenzinger Berichte 82:107–117Google Scholar
  27. Taylor J.M. 1991. Fiber Teatment. European Patent Application, 0, 538, 977 A1, 18 pp.Google Scholar
  28. Trotman E.R. 1984. Dyeing and Chemical Technology of Textile Fibers, Charles Griffin & Company Ltd., 6th edition, p. 97.Google Scholar
  29. Zhang W., Okubayashi S., Bechtold T. (2003). Modification of fibrillation by textile chemical processing. Lenzinger Berichte 82:58–63Google Scholar
  30. Zhang W., Okubayashi S., Bechtold T. (2005a). Fibrillation tendency of cellulosic fibers. Part 1: effects of swelling. Cellulose 12(3):267–273CrossRefGoogle Scholar
  31. Zhang W., Okubayashi S., Bechtold T. (2005b). Fibrillation tendency of cellulosic fibers. Part 3: effects of alkali pretreatment of lyocell fiber. Cellulose 59:173–179Google Scholar
  32. Warwicker J.O. (1969). Swelling of cotton in alkalis and acids. J. Appl. Polym. Sci 13:41–54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hale Bahar Öztürk
    • 1
  • Satoko Okubayashi
    • 2
  • Thomas Bechtold
    • 1
  1. 1.Christian-Doppler Laboratory of Textile and Fiber Chemistry of CellulosicsInstitute of Textile Chemistry and Textile Physics of Leopold–Franzens-University InnsbruckDornbirnAustria
  2. 2.Venture Business LaboratoryUniversity of FukuiFukuiJapan

Personalised recommendations