, Volume 13, Issue 4, pp 449–458 | Cite as

Studies on pre-hump and main fractions of cellulose-2,5-acetate in acetone

  • Bodo Saake
  • Martin Zenker
  • Armin Stein
  • Jürgen Puls


Technical cellulose-2.5-acetates (CA 2.5) were characterized regarding their carbohydrate composition in comparison to the raw material. The association of the CA 2.5 samples in acetone was studied by size exclusion chromatography (SEC) using various acetone grades and styrene divinylbenzene copolymer columns. In HPLC grade acetone with and without addition of 1% water up to three different pre-humps eluted in front of the main fraction of the polymer. The evaluation of the main peak by light scattering measurements resulted in high molar masses indicating that for these technical CA 2.5 samples even the main fraction is not dissolved without association. No pre-humps or association phenomena were observed after addition of 1 ppm LiBr to HPLC grade acetone or with p.a. grade acetone. In addition pre-hump enriched and pre-hump free fractions were isolated by fractionated precipitation. The carbohydrate composition of these fractions was determined and correlated with their association pattern in SEC investigations.

Key words

Cellulose acetate Hemicellulose Molar mass Pre-hump Size exclusion chromatography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Mrs Nicole Erasmy and Mr Sascha Lebioda for their excellent technical assistance.


  1. Bradway K.E. (1954). An investigation of haze in cellulose acetates made from wood pulps. TAPPI 37:440–446Google Scholar
  2. Conca R.J., Hamilton J.K., Kircher H.W. (1963). Haze in cellulose acetate. TAPPI 46:644–648Google Scholar
  3. Eigner W.D., Billiani J., Huber A. (1987). Ausschlusschromatographie gekoppelt mit Kleinwinkellaserlichtstreuung zur Molmassencharakterisierung von Cellulosederivaten. Das Papier 41:680–684Google Scholar
  4. Fleury E., Dubois J., Leonard C., Joseleau J.P., Chanzy H. (1994). Microgels and ionic associations in solutions of cellulose diacetate. Cellulose 1:131–144CrossRefGoogle Scholar
  5. Funaki Y., Ueda K., Saka S., Soejima S. (1993). Characterization of cellulose acetate in acetone solution - Studies on prehump-II in GPC pattern. J. Appl. Polym. Sci. 48:419–424CrossRefGoogle Scholar
  6. Gardner P.E., Chang M.Y. (1974). The acetylation of native and modified hemicelluloses. TAPPI 57:71–75Google Scholar
  7. Lee S.-J., Altaner C., Puls J., Saake B. (2003). Determination of the substituent distribution along cellulose acetate chains as revealed by enzymatic and chemical methods. Carbohydr. Polym. 54:353–363CrossRefGoogle Scholar
  8. Kamide K., Terakawa T., Manabe S., Miyazaki Y. (1975). Dissolved state of cellulose diacetate in acetone. Seni. Gakk. 31:T-410Google Scholar
  9. Kulicke W.-M., Böse N. (1984). Bestimmung der Momassenverteilung sowie der Stabilitätsgrenzen von Polyacrylamiden unter Benutzung einer kombinierten Ausschlusschromatographie/Kleinwinkel-Laser-Streulichtphotometer Anlage. Coll. Polym. Sci. 262:197–207CrossRefGoogle Scholar
  10. Malm C.J., Tanghe L.J. (1963). Factors during the making of cellulose acetate which influence false viscosity. TAPPI 46:629–636Google Scholar
  11. Puls J., Poutanen K., Körner H.-U., Viikari L. (1985). Biotechnical utilization of wood carbohydrates after steaming pretreatment. Appl. Microb. Biotechnol. 22:416–423CrossRefGoogle Scholar
  12. Richter G.A., Herdle L.E. (1957). False viscosity in cellulose acetate solutions. Ind. Eng. Chem. 49:1451–1452CrossRefGoogle Scholar
  13. Russo W.B., Serad G.A. (1977). Characterization of insoluble cellulose acetate residues. In: Turbak A.F. (eds), Solvent Spun Rayon Modified Cellulose Fibers and Derivatives ACS Symposium Series, Vol. 58. ACS, Washington D.C., pp. 96–114Google Scholar
  14. Saake B., Horner S., Puls J. (1998). Progress in the enzymatic hydrolysis of cellulose derivatives. In: Heinze T.J., Glasser W.G. (eds), Cellulose Derivatives. Modification, Characterization and Nanostructure. ACS Symposium Series, Vol. 688. ACS, Washington DC, pp. 201–216Google Scholar
  15. Sinner M., Puls J. (1978). Non-corrosive dye reagent for detection of reducing sugars in borate complex ion-exchange chromatography. J. Chromatogr. 156:197–204CrossRefGoogle Scholar
  16. Steinmann H.W., White B.B. (1954). Mannan in purified wood pulp and its relation to cellulose acetate properties. TAPPI 37:225–232Google Scholar
  17. Tanghe L.J., Rebel W.J., Brewer R.J. (1970). Prehump in gel-permeation chromatography fractionation of pulp cellulose acetate. J. Polym. Sci.: Part A-1 Polym. Chem. 8:2935–2947CrossRefGoogle Scholar
  18. Ueda, K. and Saka, S. 1989. Comparative studies of cellulose diacetate in acetone as prepared by conventional and new acetylation/ripening processes. In: Barth, H.G. (ed.), J. Appl. Polym. Sci., Appl. Polym. Symp. Vol. 43. Wiley, New York, pp. 309–322.Google Scholar
  19. Ueda K., Saka S., Funaki Y., Soejima S. (1988a). Characterization of acetone-insoluble substances in cellulose–acetate as prepared by an acetylation/ripening process from wood pulps. Mokuzai Gakk. 34:346–353Google Scholar
  20. Ueda K., Saka S., Soejima S. (1988b). Characterizing cellulose acetate prepared by a new acetylation and ripening process. TAPPI 71:183–187Google Scholar
  21. Watson J.K., Henderson D.R. (1957). The effect of low D.P. carbohydrates on the concentrated solution viscosity of cellulose acetate. TAPPI 40:686–690Google Scholar
  22. Wells F.L., Schattner W.C., Walker A. (1963). Hemicellulose and false viscosity in cellulose acetate. TAPPI 46:581–586Google Scholar
  23. Wilson J.D., Tabke R.S. (1974). Influences of hemicelluloses on acetate processing in high catalyst systems. TAPPI 57:77–80Google Scholar
  24. Zenker, M. 2005. Verhalten von Cellulosediacetat in Acetonlösungen. Diploma thesis, Department of Wood Science, Universität Hamburg, pp. 47–48.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Bodo Saake
    • 1
  • Martin Zenker
    • 1
  • Armin Stein
    • 2
  • Jürgen Puls
    • 1
  1. 1.Institut für Holzchemie und chemische Technologie des HolzesBundesforschungsanstalt für Forst- und HolzwirtschaftHamburgGermany
  2. 2.Rhodia Actow GmbHFreiburgGermany

Personalised recommendations