Advertisement

Cellulose

, Volume 12, Issue 5, pp 527–541 | Cite as

Synthesis of Diblock Copolymers With Cellulose Derivatives. 2. Characterization and Thermal Properties of Cellulose Triacetate-Block-Oligoamide-15

  • Hiroshi Kamitakahara
  • Yukiko Enomoto
  • Chinatsu Hasegawa
  • Fumiaki Nakatsubo
Article

Abstract

Well-defined A-block-B type cellulose derivatives consisting of cellulose triacetate (CTA) and oligoamide-15 were synthesized. Chemical structures of the diblock copolymers were characterized by MALDI-TOF MS, 1H-NMR, and GPC. Influence of length of CTA and oligoamide-15 segments on their thermal properties was investigated by means of differential scanning calorimetry (DSC). All diblock copolymers displayed Tg, Tc, and Tm transition temperatures. Their Tg and Tm values increased with the increase of molecular weight of CTA segment. The crystallinity of diblock copolymers increased after isothermal crystallization at 200 °C. Its X-ray analysis revealed that the diblock copolymer had CTA II crystal structure. Thermal analysis supported microphase separation between CTA and oligoamide-15 segments at room temperature, because Tg and Tm values of polyamide-15 are −7 °C and 170–180 °C, respectively.

Key words

Cellulose triacetate Diblock copolymer Differential scanning calorimetry MALDI-TOF MS Microphase separation Oligoamide-15 

Abbreviations

CTA

Cellulose triacetate

GPC

Gel permeation chromatography

MALDI-TOF MS

Matrix assisted laser desorption/ionization time-of-flight mass spectroscopy

DSC

differential scanning calorimetry

DPn

Number-average degree of polymerization

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arndt, P., Bockholt, K., Gerdes, R., Huschens, S., Pyplo, J., Redlich, H., Samm, K. 2003Cellulose oligomers: preparation from cellulose triacetatechemical transformations and reactionsCellulose107583CrossRefGoogle Scholar
  2. Atalla, R.H., Ellis, J.D., Schroeder, L.R. 1984Some effects of elevated-temperatures on the structure of cellulose and its transformationJ. Wood Chem. Technol.4465482Google Scholar
  3. Ceresa, R.J. 1961The synthesis of block and graft copolymer of cellulose and its derivativesPolymer2213219CrossRefGoogle Scholar
  4. de Oliveira, W., Glasser, W.G. 1994aMultiphase materials with lignin .13. Block-copolymers with cellulose propionatePolymer3519771985Google Scholar
  5. de Oliveira, W., Glasser, W.G. 1994bNovel cellulose derivatives. 2. Synthesis and characteristics of mono-functional cellulose propionate segmentsCellulose17786Google Scholar
  6. De Rosa, C., Park, C., Thomas, E.L., Lotz, B. 2000Microdomain patterns from directional eutectic solidification and epitaxyNature405433437Google Scholar
  7. Feger, C., Cantow, H.J. 1980Cellulose containing block copolymers 1. Synthesis of trimethylcellulose-(b-poly(oxytetramethylene))-star block copolymersPolym. Bull.3407413CrossRefGoogle Scholar
  8. Forster, S., Plantenberg, T. 2002From self-organizing polymers to nanohybrid and biomaterialsAngew. Chem. Int. Edit.41689714Google Scholar
  9. Glasser, W. 2004Prospects for future applications of cellulose acetateMacromol. Symp.208371394CrossRefGoogle Scholar
  10. Glasser, W., Becker, U. 1999About the depolymerization of cellulose propionate to segments with low dpCellulose6283289CrossRefGoogle Scholar
  11. Gyorgydeak, Z., Szilagyi, L., Paulsen, H. 1993Synthesis, structure and reactions of glycosyl azidesJ. Carbohyd. Chem.12139163Google Scholar
  12. Huang, E., Rockford, L., Russell, T.P., Hawker, C.J. 1998Nanodomain control in copolymer thin filmsNature395757758Google Scholar
  13. Illers, K.-H. 1977Glass transition and cold crystallization in ‘even’ and ‘odd’ omega-amino-acid polyamidesPolymer18551553CrossRefGoogle Scholar
  14. Isogai, A., Usuda, M. 1991Preparation of low-molecular-weight celluloses using phosphoric-acidMokuzai Gakkaishi37339344Google Scholar
  15. Kamitakahara, H., Nakatsubo, F. 2005Synthesis of diblock copolymers with cellulose derivatives. 1. Model study with azidoalkyl carboxylic acid and cellobiosylamine derivativeCellulose12209219CrossRefGoogle Scholar
  16. Kim, S., Stannett, V.T., Gilbert, R.D. 1973A new class of biodegradable polymersJ. Polym. Sci. Polym. Lett. Edit.11731735Google Scholar
  17. Kim, S., Stannett, V.T., Gilbert, R.D. 1976Biodegradable cellulose block copolymersJ. Macromol. Sci. Pt. AChem. A10671679Google Scholar
  18. Lemieux, R.U., Koto, S. 1974The conformational properties of glycosidic linkagesTetrahedron3019331944CrossRefGoogle Scholar
  19. Mezger, T., Cantow, H.J. 1983aCellulose containing block co-polymers. 4. Cellulose triester macroinitiatorsAngew. Makromol. Chem.1161327Google Scholar
  20. Mezger, T., Cantow, H.J. 1983bCellulose containing block co-polymers. 5. Threeblock co-polymer syntheses via macroinitiatorMakromol. Chemie-Rapid Commun.4313320Google Scholar
  21. Mezger, T., Cantow, H.J. 1984Cellulose-containing triblock copolymers – syntheses via cellulosic dithiodiaryl photoinitiatorsPolym. Photochem.54956Google Scholar
  22. Pan, G.Y., Chen, C.L., Gratzl, J.S., Chang, H.M. 1995Model-compound studies on the cleavage of glycosidic bonds by ozone in aqueous-solutionRes. Chem. Interm.21205222Google Scholar
  23. Park, M., Harrison, C., Chaikin, P.M., Register, R.A., Adamson, D.H. 1997Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeterScience27614011404CrossRefGoogle Scholar
  24. Pohjola, L., Eklund, V. 1977Polyurethane block copolymers from cellulose acetatePap. Puu.3117120Google Scholar
  25. Rahn, K., Diamantoglou, M., Klemm, D., Berghmans, H., Heinze, T. 1996Homogeneous synthesis of cellulose p-toluenesulfonates in nn-dimethylacetamide/licl solvent systemAngew. Makromol. Chem.238143163Google Scholar
  26. Sata, H., Murayama, M., Shimamoto, S. 2004Properties and applications of cellulose triacetate filmMacromol. Symp.208323333CrossRefGoogle Scholar
  27. Sperling, L.H. 1986Physical Polymer ScienceJohn Wiley & SonsNew YorkGoogle Scholar
  28. Staudinger, H., Daumiller, G. 1937Über hochpolymere verbindungen. 154. Mitteilung. Untersuchungen an celluloseacetaten und cellulosenAnnalen der Chemie529219265Google Scholar
  29. Steinmann, H.W. 1970Elastomeric fibers from cellulose triacetatePolym. Prepr., Am. Chem. Soc. Div. Polym. Chem.11285290Google Scholar
  30. Zugenmaier, P. 2004Characterization and physical properties of celluloseMacromol. Symp.20881166CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hiroshi Kamitakahara
    • 1
  • Yukiko Enomoto
    • 1
  • Chinatsu Hasegawa
    • 1
  • Fumiaki Nakatsubo
    • 1
  1. 1.Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations